Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes activity

A substantial fraction of the named enzymes are oxido-reductases, responsible for shuttling electrons along metabolic pathways that reduce carbon dioxide to sugar (in the case of plants), or reduce oxygen to water (in the case of mammals). The oxido-reductases that drive these processes involve a small set of redox active cofactors , that is, small chemical groups that gain or lose electrons. These cofactors include iron porjDhyrins, iron-sulfur clusters and copper complexes as well as organic species that are ET active. [Pg.2974]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

Fig. 2.17 Nickel and copper complexes as catalysts for the hydrothiolation of alkynes and activated alkenes... Fig. 2.17 Nickel and copper complexes as catalysts for the hydrothiolation of alkynes and activated alkenes...
The copper(II) complexes of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) and related compounds are active in vivo agents [151, 158, 159]. The metal complexes of 2-heterocyclic thiosemicarbazones were evaluated for their cytotoxicities [160, 161]. Further studies have revealed that these ligand s iron and copper complexes are effective inhibitors of DNA synthesis at much lower concentrations than the free thiosemicarbazones without apparent cytotoxicity [127]. Although the iron(III) complex of 2-isoformylquinoline thiosemicarbaz-one, 21, is considerably more active than free 21, the copper(II) complex is only moderately more active [127]. [Pg.22]

Kensler, T.W. and Trush, M.A, (1983). Inhibition of oxygen radical metabolism in phorbol ester-activated polymorphonuclear leukocytes by an antitumor promoting copper complex with superoxide dismutase-mimetic activity. Biochem. Pharmacol. 32, 3485-3487. [Pg.259]

A number of heteroaromatic monothiocarboxylic acids are formed by Pseudomonas sp. From P. putida, there was isolated pyridine-2,6-di-(mon-othiocarboxylic acid) 46 (Scheme 16). Of interest is the fact that in P. stutzeri KC, a copper complex of 46 is the active agent for a one electron transfer in the bacterial biodegradation of CCI4. Methylation of P. putida extracts provides a number of related structures such as 47. In addition, a P. fluorescens sp. contains 8-hydroxy-4-methoxy-quinoline-2-monothiocarboxylic acid 48.98... [Pg.695]

Structural Understanding of ATRP Active Copper Complexes. 227... [Pg.221]

ATRP, other factors, such as solvent and temperature, must also be taken into consideration. Typical monomers and alkyl halide initiators that are used in ATRP are shown in Scheme 5 [47], The copper complex is perhaps the most important component of this catalytic system because it regulates the dynamic equilibrium between dormant and active species. In this article, structural and mechanistic aspects of copper-catalyzed ATRP are discussed. [Pg.227]

Activation rate constants (k) in ATRP/ATRA are typically determined from model studies in which copper complex is reacted with alkyl halide in the presence of radical trapping agents such as TEMPO [127,128,129], Rates are determined by monitoring the rate of disappearance of alkyl halide in the presence of large excess of the activator (Cu X/L) and TEMPO. Under such pseudo-first order conditions, the activation rate constant can be calculated ln([RX]0/[RX]() vs.t plots (slope =-k) Cu C/... [Pg.239]

Catalyst activity (in terms of KAJRp) is also intrinsically dependent on the redox potential of the metal complex. The latter, in turn, depends on the relative stability of the higher (MtM+1/L) and lower (Mt"/L) oxidation states. For the case of relatively stablel 1 copper complexes, the redox potential can be calculated using the following equation [98,144,145,146] ... [Pg.242]

ARGET ATRP has been successfully applied for polymerization of methyl methacrylate, ft-butyl acrylate and styrene in the presence of Sn(EH)2 (10 mol% vs. alkyl halide initiator or 0.07 mol% vs. monomer) [164,165]. For all monomers, polymerizations were well controlled using between 10 and 50 ppm of copper complexes with highly active TPMA and Me6TREN ligands. ARGET ATRP has also been utilized in the synthesis of block copolymers (poly(n-butyl acrylate)— -polystyrene and polystyrene-Z -poly(n-butyl acrylate) [164,165] and grafting... [Pg.245]


See other pages where Copper complexes activity is mentioned: [Pg.234]    [Pg.234]    [Pg.31]    [Pg.486]    [Pg.124]    [Pg.493]    [Pg.212]    [Pg.106]    [Pg.113]    [Pg.117]    [Pg.130]    [Pg.106]    [Pg.187]    [Pg.190]    [Pg.4]    [Pg.92]    [Pg.193]    [Pg.138]    [Pg.760]    [Pg.769]    [Pg.778]    [Pg.841]    [Pg.950]    [Pg.218]    [Pg.158]    [Pg.162]    [Pg.163]    [Pg.154]    [Pg.156]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.237]    [Pg.239]    [Pg.241]    [Pg.243]    [Pg.246]   
See also in sourсe #XX -- [ Pg.153 , Pg.155 ]




SEARCH



Active copper

Copper activation

Copper activity

© 2024 chempedia.info