Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination spheres redox

Olefin synthesis starts usually from carbonyl compounds and carbanions with relatively electropositive, redox-active substituents mostly containing phosphorus, sulfur, or silicon. The carbanions add to the carbonyl group and the oxy anion attacks the oxidizable atom Y in-tramolecularly. The oxide Y—O" is then eliminated and a new C—C bond is formed. Such reactions take place because the formation of a Y—0 bond is thermodynamically favored and because Y is able to expand its coordination sphere and to raise its oxidation number. [Pg.28]

Outer-sphere. Here, electron transfer from one reactant to the other is effected without changing the coordination sphere of either. This is likely to be the ea.se if both reactants are coordinatively. saturated and can safely be assumed to be so if the rate of the redox process is faster than the rates observed for substitution (ligand tran.sfer) reactions of the species in question. A good example is the reaction. [Pg.1124]

Ni has a coordination sphere of 5 or 6 mixed S-, N-, 0-donors and is believed to undergo redox cycling between III, II and I oxidation states. [Pg.1167]

The midpoint redox potentials were estimated to be +230 mV (pH = 8.6) or +281 mV (pH = 7.0) for the Rd-like centers, and +339 and +246 mV (pH = 7.0) for the diiron-oxo center 38, 43). This is a surprising observation, since the normal redox potential of Rd centers is about 0 mV. All spectroscopic evidence points to the fact that the monomeric iron centers present in Rr are virtually identical to the ones found in Rd. Hence, it is reasonable to assume that the first coordination sphere of these centers cannot be held responsible for the 250 mV difference in the midpoint redox potentials. [Pg.368]

The potential of the cluster units described here to participate in intermolecular chalcogen-chalcogen interactions combined with the easy modification of their outer coordination sphere with ligands of different nature, i.e., redox active, hydrogen donors, bi-functional, etc., make these systems useful blocks for the construction of supramolecular materials with multi-physical properties. [Pg.115]

As illustrated in Fig. 9.40, progressively more complex models for the environment of Fe in oxidized or reduced rubredoxin produce better simulations of the NIS pattern. A simple Fe(SCH3)4 model (21 atoms) predicts a division of the spectrum into Fe-S stretch and S-Fe-S/Fe-S-C bend regions, but at least a model with 49 atoms is needed to reproduce the splitting of the stretch region and to capture some of the features between 10 and 30 meV. These results confirm the delocalization of the dynamic properties of the redox-active Fe site far beyond the immediate Fe-S4 coordination sphere. [Pg.531]

The introduction of redox activity through a Co11 center in place of redox-inactive Zn11 can be revealing. Carboxypeptidase B (another Zn enzyme) and its Co-substituted derivative were oxidized by the active-site-selective m-chloroperbenzoic acid.1209 In the Co-substituted oxidized (Co111) enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Oxidation of the native enzyme resulted in modification of a methionine residue instead. These studies indicate that the two metal ions impose different structural and functional properties on the active site, leading to differing reactivities of specific amino acid residues. Replacement of zinc(II) in the methyltransferase enzyme MT2-A by cobalt(II) yields an enzyme with enhanced activity, where spectroscopy also indicates coordination by two thiolates and two histidines, supported by EXAFS analysis of the zinc coordination sphere.1210... [Pg.109]

V,/V-bis(2-hydroxy-di-3,5-/-butylphenyl)amine forms complexes of zinc which have ligand-based redox processes with four oxidation levels of the coordinated anion.864 2 1 and 1 1 complexes are formed in the presence of zinc with the 2 1 complex coordinated in an octahedral geometry and the 1 1 complex square planar with a triethylamine ligand completing the coordination sphere. The complexes, at the different redox levels, have been investigated by EPR, spectro-electrochemistry, l I NMR, and magnetochemistry, as appropriate. [Pg.1224]

In the case of the Ru(III)-chelates, the crowded coordination sphere around the metal center prevents the coordination of 02. Thus, the corresponding kinetic model postulates that ascorbic acid is oxidized by Ru(III) in two subsequent redox steps and Ru(II) is reoxidized by 02 ... [Pg.410]

As indicated in Scheme 11, there are basically two classes of chemistry that have been observed for [Os CO) ]2-. One involves expansion of the ligand coordination sphere, without changing the stereochemistry of the metal cluster, and is electronically related to the parent carbonyl Os5(CO)18, while the second involves redox reactions, with addition of two electrons to the metal cluster and concomitant structural changes in the metal polyhedra (204). [Pg.328]

The most important single development in the understanding of the mechanisms of redox reactions has probably been the recognition and establishment of outer-sphere and inner-sphere processes. Outer-sphere electron transfer involves intact (although not completely undisturbed) coordination shells of the reactants. In inner-sphere redox reactions, there are marked changes in the coordination spheres of the reactants in the formation of the activated complex. [Pg.258]

Chromium(II) is a very effective and important reducing agent that has played a significant and historical role in the development of redox mechanisms (Chap. 5). It has a facile ability to take part in inner-sphere redox reactions (Prob. 9). The coordinated water of Cr(II) is easily replaced by the potential bridging group of the oxidant, and after intramolecular electron transfer, the Cr(III) carries the bridging group away with it and as it is an inert product, it can be easily identified. There have been many studies of the interaction of Cr(II) with Co(III) complexes (Tables 2.6 and 5.7) and with Cr(III) complexes (Table 5.8). Only a few reductions by Cr(II) are outer-sphere (Table 5.7). By contrast, Cr(edta) Ref. 69 and Cr(bpy)3 are very effective outer-sphere reductants (Table 5.7). [Pg.382]

This electrode is unique in that the bilirubin oxidase is active at neutral pH, whereas the laccase cited above is not, even though the redox potential of laccase is somewhat higher. Additionally, the bilirubin oxidase is much less sensitive to high concentrations of other anions such as chloride and bromide, which deactivate laccase. It was shown that mutations of the coordination sphere of bilirubin oxidase led to an increased redox potential of the enzyme, which increased current density and reduced current decay to 5%/day over 6 days at 300 rpm. The latter improvement was attributed to improved electrostatic attraction between the enzyme and the redox polymer. An electrode made with high-purity bilirubin oxidase and this redox polymer has recently been shown to outperform a planar platinum electrode in terms of activation potential and current density of oxygen reduction. ... [Pg.639]

Although the redox reactions in Sch. 12 have not been achieved electrochemically, they illustrate another type of redox-induced structural change in a dimolybdenum compound with a sulfur-rich coordination sphere. In this case, Mo2(/r-S)2 ring opening in 18 (cleavage of Mo—Mo and Mo—S bonds) is associated with the exposure of vacant coordination sites, and the uptake of two carbonyl ligands in 17 [7, 53]. [Pg.576]


See other pages where Coordination spheres redox is mentioned: [Pg.295]    [Pg.261]    [Pg.295]    [Pg.261]    [Pg.439]    [Pg.92]    [Pg.406]    [Pg.755]    [Pg.1193]    [Pg.339]    [Pg.472]    [Pg.810]    [Pg.57]    [Pg.219]    [Pg.533]    [Pg.197]    [Pg.300]    [Pg.407]    [Pg.109]    [Pg.598]    [Pg.600]    [Pg.170]    [Pg.404]    [Pg.639]    [Pg.104]    [Pg.248]    [Pg.87]    [Pg.282]    [Pg.344]    [Pg.450]    [Pg.146]    [Pg.319]    [Pg.227]    [Pg.86]    [Pg.580]    [Pg.593]    [Pg.603]    [Pg.1032]   
See also in sourсe #XX -- [ Pg.96 , Pg.98 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.121 ]




SEARCH



Coordinate Sphere

Coordination sphere

© 2024 chempedia.info