Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling shear

The transformation is beHeved to occur by a diffusionless shear process (83). It is often referred to as martensitic transformation, having a thermal hysteresis between the cooling and heating cycles. The transformation is dependent on particle size finer particles transforming at a lower temperature than... [Pg.323]

Flow processes iaside the spinneret are governed by shear viscosity and shear rate. PET is a non-Newtonian elastic fluid. Spinning filament tension and molecular orientation depend on polymer temperature and viscosity, spinneret capillary diameter and length, spin speed, rate of filament cooling, inertia, and air drag (69,70). These variables combine to attenuate the fiber and orient and sometimes crystallize the molecular chains (71). [Pg.329]

Ko//M //s. When dispersion is requited ia exceedingly viscous materials, the large surface area and small mixing volume of roU mills allow maximum shear to be maintained as the thin layer of material passiag through the nip is continuously cooled. The roUs rotate at different speeds and temperatures to generate the shear force with preferential adhesion to the warmer roU. [Pg.441]

In the post-dispersion process, the soHd phenoHc resin is added to a mixture of water, cosolvent, and dispersant at high shear mixing, possibly with heating. The cosolvent, frequently an alcohol or glycol ether, and heat soften the resin and permit small particles to form. On cooling, the resin particles, stabilized by dispersant and perhaps thickener, harden and resist settling and agglomeration. Both resole and novolak resins have been made by this process (25). [Pg.298]

Glasses, like metals, are formed by deformation. Liquid metals have a low viscosity (about the same as that of water), and transform discontinuously to a solid when they are cast and cooled. The viscosity of glasses falls slowly and continuously as they are heated. Viscosity is defined in the way shown in Fig. 19.7. If a shear stress is applied to the hot glass, it shears at a shear strain rate 7. Then the viscosity, ij, is defined by... [Pg.198]

The liquid crystal polymers consist of rod-like molecules which, during shear, tend to orient in the direction of shear. Because of the molecular order the molecules flow past each other with comparative ease and the melts have a low viscosity. When the melt is cooled the molecules retain their orientation, giving self-reinforcing materials that are extremely strong in the direction of orientation. [Pg.53]

Cooling rates can affect product properties in a number of ways. If the polymer melt is sheared into shape the molecules will be oriented. On release of shearing stresses the molecules will tend to re-coil or relax, a process which becomes slower as the temperature is reduced towards the Tg. If the mass solidifies before relaxation is complete (and this is commonly the case) frozen-in orientation will occur and the polymeric mass will be anisotropic with respect to mechanical properties. Sometimes such built-in orientation is deliberately introduced, such as... [Pg.174]

In Chapter 3 it was pointed out that certain rod-like polymers showed many of the attributes of liquid crystals in the melt. In particular, these molecules were oriented in shear to such an extent that interchain entanglement was small and the melts had a low viscosity. On cooling of the melt these rod-like molecules remained oriented, effectively self-reinforcing the polymer in the direction of flow. The essential differences in the properties of liquid crystal polymers... [Pg.733]

Figure 25.24. Difference in behaviour between liquid crystal polymers and conventional crystalline polymers in the melt at rest, during shear and when cooled after shearing... Figure 25.24. Difference in behaviour between liquid crystal polymers and conventional crystalline polymers in the melt at rest, during shear and when cooled after shearing...

See other pages where Cooling shear is mentioned: [Pg.33]    [Pg.378]    [Pg.33]    [Pg.378]    [Pg.2598]    [Pg.5]    [Pg.202]    [Pg.206]    [Pg.241]    [Pg.305]    [Pg.26]    [Pg.149]    [Pg.301]    [Pg.207]    [Pg.512]    [Pg.272]    [Pg.306]    [Pg.135]    [Pg.461]    [Pg.385]    [Pg.523]    [Pg.473]    [Pg.478]    [Pg.127]    [Pg.334]    [Pg.323]    [Pg.357]    [Pg.520]    [Pg.139]    [Pg.289]    [Pg.1042]    [Pg.1443]    [Pg.154]    [Pg.258]    [Pg.263]    [Pg.289]    [Pg.353]    [Pg.589]    [Pg.734]    [Pg.486]    [Pg.533]    [Pg.435]    [Pg.251]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Cooling shear-sensitive

© 2024 chempedia.info