Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Control valves booster relays

The resulting motion of the beam is detected by the pneumatic nozzle amphfier, which, by proper sizing of the nozzle and fixed orifice diameters, causes the pressure internal to the nozzle to rise and fall with vertical beam motion. The internal nozzle pressure is routed to the pneumatic relay. The relay, which is constructed like the booster relay described in the Valve Control Devices subsection, has a direct hnear input-to-output pressure characteristic. The output of the relay is the controller s output and is piped away to the final control element. [Pg.776]

Devices mounted on the control valve that interface various forms of input signals, monitor and transmit valve position, or modify valve response are valve control devices. In some applications, several auxiliary devices are used together on the same control valve. For example, mounted on the control valve, one may find a current-to-pressure transducer, a valve positioner, a volume booster relay, a solenoid valve, a trip valve, a limit switch, a process controller, and/or a stem position transmitter. Figure 8-80 shows a valve positioner mounted on tne yoke leg of a spring and diaphragm actuator. [Pg.84]

With the exception of the dead-band booster, the application of booster relays has diminished somewhat by the increased use of current-to-pressure transducers, electropneumatic positioners, and electronic control systems. Transducers and valve positioners serve much the same functionality as the booster relay in addition to interfacing with the electronic process controller. [Pg.90]

Booster relays are designed to provide extra flow capacity for the instrument air system, which decreases the dynamic response time of the control valve (i.e., the time for most of a change to occur). Booster relays are used on valve actuators for large valves that require a large volume of instrument air to move the valve stem. Booster relays use the pneumatic signal as input and adjust the pressure of a high flow rate capacity instrument air system that provides pressure directly to the diaphragm of the valve actuator. [Pg.1191]

In the process industries the most common final element is a remote actuated valve. This assembly usually consists of a pneumatic/hydraulic control assembly, an actuator and a valve (Figure 11-1). The control assembly may be as simple as a three-way solenoid, a smart partial valve stroke box or a complex electro-pneumatic assembly with solenoids, test switches, pneumatic booster relays and quick exhaust valves. [Pg.157]


See other pages where Control valves booster relays is mentioned: [Pg.785]    [Pg.90]    [Pg.90]    [Pg.219]    [Pg.90]    [Pg.90]    [Pg.606]    [Pg.609]    [Pg.965]    [Pg.965]    [Pg.970]    [Pg.970]    [Pg.414]    [Pg.786]    [Pg.789]   


SEARCH



Boosterism

Boosters

Control valve

© 2024 chempedia.info