Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Booster relays

The resulting motion of the beam is detected by the pneumatic nozzle amphfier, which, by proper sizing of the nozzle and fixed orifice diameters, causes the pressure internal to the nozzle to rise and fall with vertical beam motion. The internal nozzle pressure is routed to the pneumatic relay. The relay, which is constructed like the booster relay described in the Valve Control Devices subsection, has a direct hnear input-to-output pressure characteristic. The output of the relay is the controller s output and is piped away to the final control element. [Pg.776]

Devices mounted on the control valve that interface various forms of input signals, monitor and transmit valve position, or modify valve response are valve control devices. In some applications, several auxiliary devices are used together on the same control valve. For example, mounted on the control valve, one may find a current-to-pressure transducer, a valve positioner, a volume booster relay, a solenoid valve, a trip valve, a limit switch, a process controller, and/or a stem position transmitter. Figure 8-80 shows a valve positioner mounted on tne yoke leg of a spring and diaphragm actuator. [Pg.84]

The flow capacity of the transducer can be increased by adding a booster relay such as the one shown in Fig. 8-87b. The flow capacity of the booster relay is nominally 50 to 100 times that of the nozzle amplifier shown in Fig. 8-87a and makes the combined transducer/booster suitably responsive to operate pneumatic actuators. This type of transducer is stable for all sizes of load volume and produces measured accuracy (see ANSI/ISA-51.1, "Process Instrumentation Terminology, for the definition of measured accuracy) of 0.5 to 1.0 percent of span. [Pg.90]

A particular type of booster relay, called a dead-band booster, is shown in Fig. 8-88. This booster is designed to be used exclusively between the output of a valve positioner and the input to a pneumatic actuator. It is designed to provide extra flow capacity to stroke the actuator faster than with the positioner alone. The dead-band booster is designed intentionally with a large dead band (approximately 5 percent of the input span), elastomer seats for tight shutoff, and an adjustable bypass valve connected between the input and output of the booster. The bypass valve is tuned to provide the best compromise between increased actuator stroking speed and positioner/actuator stability. [Pg.90]

With the exception of the dead-band booster, the application of booster relays has diminished somewhat by the increased use of current-to-pressure transducers, electropneumatic positioners, and electronic control systems. Transducers and valve positioners serve much the same functionality as the booster relay in addition to interfacing with the electronic process controller. [Pg.90]

FIG. 8-88 Dead-band booster relay. (Courtesy Fisher Controls International LLC.)... [Pg.91]

Booster relays are designed to provide extra flow capacity for the instrument air system, which decreases the dynamic response time of the control valve (i.e., the time for most of a change to occur). Booster relays are used on valve actuators for large valves that require a large volume of instrument air to move the valve stem. Booster relays use the pneumatic signal as input and adjust the pressure of a high flow rate capacity instrument air system that provides pressure directly to the diaphragm of the valve actuator. [Pg.1191]


See other pages where Booster relays is mentioned: [Pg.785]    [Pg.90]    [Pg.90]    [Pg.90]    [Pg.90]    [Pg.606]    [Pg.606]    [Pg.609]    [Pg.878]    [Pg.965]    [Pg.965]    [Pg.1191]    [Pg.883]    [Pg.970]    [Pg.970]    [Pg.414]    [Pg.786]   
See also in sourсe #XX -- [ Pg.1191 ]




SEARCH



Boosterism

Boosters

© 2024 chempedia.info