Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous ideally stirred tank reactor

Other models to characterize residence time distributions are based on fitting the measured distribution to models for a plug flow with axial dispersion or for series of continuously ideally stirred tank reactors in series. For the first model the Peclet number is the characteristic parameter, for the second model the number of ideally stirred tank reactors needed to fit the residence time distribution typifies the distribution. However, these models should be used with care because they assume a standard distribution in residence times. Most distributions in extruders show a distinct scewness, which could lead to erroneous results at very short and very long residence times. The only exception is the co-kneader the high amount of back mixing in this type of machine leads to a nearly perfect normal distribution. [Pg.87]

Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that frequently for both production and fundamental kinetic studies. Unfortunately, this name, abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises from the assumption in the analysis that the reactor is perfectly mixed, and that it is homogeneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). [Pg.383]

There are two important types of ideal, continuous-flow reactors the piston flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR. They behave very diflerently with respect to conversion and selectivity. The piston flow reactor behaves exactly like a batch reactor. It is usually visualized as a long tube as illustrated in Figure 1.3. Suppose a small clump of material enters the reactor at time t = 0 and flows from the inlet to the outlet. We suppose that there is no mixing between this particular clump and other clumps that entered at different times. The clump stays together and ages and reacts as it flows down the tube. After it has been in the piston flow reactor for t seconds, the clump will have the same composition as if it had been in a batch reactor for t seconds. The composition of a batch reactor varies with time. The composition of a small clump flowing through a piston flow reactor varies with time in the same way. It also varies with position down the tube. The relationship between time and position is... [Pg.17]

Continuous flow stirred tank reactors are normally just what the name implies—tanks into which reactants flow and from which a product stream is removed on a continuous basis. CFSTR, CSTR, C-star, and back-mix reactor are only a few of the names applied to the idealized stirred tank flow reactor. We will use the letters CSTR as a shorthand notation in this textbook. The virtues of a stirred tank reactor lie in its simplicity of construction and the relative ease with which it may be controlled. These reactors are used primarily for carrying out liquid phase reactions in the organic chemicals... [Pg.269]

Continuous Multicomponent Distillation Column 501 Gas Separation by Membrane Permeation 475 Transport of Heavy Metals in Water and Sediment 565 Residence Time Distribution Studies 381 Nitrification in a Fluidised Bed Reactor 547 Conversion of Nitrobenzene to Aniline 329 Non-Ideal Stirred-Tank Reactor 374 Oscillating Tank Reactor Behaviour 290 Oxidation Reaction in an Aerated Tank 250 Classic Streeter-Phelps Oxygen Sag Curves 569 Auto-Refrigerated Reactor 295 Batch Reactor of Luyben 253 Reversible Reaction with Temperature Effects 305 Reversible Reaction with Variable Heat Capacities 299 Reaction with Integrated Extraction of Inhibitory Product 280... [Pg.607]

In real tubular (or column) reactors there is, usually, a back-mixing effect which influences the performance of the ideal plug-flow reactor. This axial dispersion is higher for fluidized-bed reactors than for packed-bed reactors, although comparatively lower than for continuous-feed stirred-tank reactors, where the mixing is complete. [Pg.432]

With these parameters we can set-up a mass balance on the system, which is the basis for evaluating the experimental results. The mass balance for the absorption (of any gas, e. g. ozone) in a continuous-flow stirred tank reactor (CFSTR) under the assumption that the gas and liquid phases are ideally mixed (cL = cLe, cG = cGe), are as follows ... [Pg.41]

Continuous stirred tank reactor Sometimes called a continuous-flow stirred-tank reactor, ideal mixer, or mixed-flow reactor, all describing reactors with continuous input and output of material. The outlet concentration is assumed to be the same as the concentration at any point in the reactor. [Pg.461]

The various types of reactors employed in the processing of fluids in the chemical process industries (CPI) were reviewed in Chapter 4. Design equations were also derived (Chapters 5 and 6) for ideal reactors, namely the continuous flow stirred tank reactor (CFSTR), batch, and plug flow under isothermal and non-isothermal conditions, which established equilibrium conversions for reversible reactions and optimum temperature progressions of industrial reactions. [Pg.552]

Process Transfer Function Models In continuous time, the dynamic behaviour of an ideal continuous flow stirred-tank reactor can be modelled (after linearization of any nonlinear kinetic expressions about a steady-state) by a first order ordinary differential equation of the form... [Pg.256]

Three ideal reactor types are relevant from reactor theory [15], the two continuous flow types, the plug flow reactor (PFR) and continuous flow stirred tank reactor (CSTR), and the well-stirred batch reactor. The... [Pg.305]

Semibatch Operation In semibatch operation the rates of mass flow into and out of the system are unequal (see Fig. 3-1 c). For example, benzene may be chlorinated in a stirred-tank reactor by first adding the charge of liquid benzene and catalyst and then continuously adding chlorine gas until the required ratio of chlorine to benzene has been obtained. Operation of this kind is. batch from the standpoint that the composition of the reaction mixture changes with time. However, from a process standpoint the chlorine is added continuously. The system is still an ideal stirred-tank reactor if the... [Pg.109]

As we saw in Chap. 3, the relation between conversion and flow rate in a continuous-flow, stirred-tank reactor [Eq. (3-3)] is an algebraic one, in contrast to the integral relations for batch reactors [Eq. (3-10)] and plug-flow reactors [Eq. (3-13)]. If the volume (density) is constant, the simplified form, for the continuous-flow type analogous to Eqs. (4-2) and (4-5) for ideal batch and plug-flow reactors, is ... [Pg.166]

When dispersion is complete and uniform, the contents of the vessel are perfectly mixed with respect to both phases. In that case, the concentration of the solute in each of the two phases in the vessel is uniform and equal to the concentrations in the two-phase emulsion leaving the mixing tank. This is called the ideal CFSTR (continuous-flow-stirred-tank-reactor) model, sometimes called the perfectly mixed model. Next we develop an equation to estimate the Murphree-stage efficiency for liquid-liquid extraction in a perfectly mixed vessel. [Pg.458]

Finally, several alternate names have been used for what here is called the perfectly mixed flow reactor. One of the earliest was continuous stirred tank-reactor, or CSTR, which some have modified to continuous flow stirred tank reactor, or CFSTR. Other names are backmix reactor, mixed flow reactor, and ideal stirred tank reactor. All of these terms appear in the literature, and must be recognized. [Pg.420]

Disadvantages are potential problems in separating the catalyst and the risk of fractionation and sedimentation of the catalyst in the reactor. Since the residencetime behavior is similar to that of a continuous ideal stirred tank, lower conversions are attained compared to a fixed-bed reactor. A comparison of the two most important three-phase reactors — the trickle-bed reactor and the suspension reactor — is given in Table 14-1. [Pg.417]


See other pages where Continuous ideally stirred tank reactor is mentioned: [Pg.567]    [Pg.567]    [Pg.601]    [Pg.567]    [Pg.567]    [Pg.493]    [Pg.494]    [Pg.50]    [Pg.366]    [Pg.200]    [Pg.261]    [Pg.567]    [Pg.567]    [Pg.601]    [Pg.567]    [Pg.567]    [Pg.493]    [Pg.494]    [Pg.50]    [Pg.366]    [Pg.200]    [Pg.261]    [Pg.23]    [Pg.23]    [Pg.174]    [Pg.285]    [Pg.14]    [Pg.415]    [Pg.480]    [Pg.431]    [Pg.65]    [Pg.285]    [Pg.25]    [Pg.391]    [Pg.129]    [Pg.221]   


SEARCH



Continuous stirred reactor

Continuous stirred tank reactor

Continuous stirring tank reactor

Continuously stirred tank

Continuously stirred tank reactor

Ideal continuous stirred tank reactor

Ideal reactors

Reactor ideal reactors

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred continuous

Stirred tank reactors

Tank reactor

Tank reactor reactors

© 2024 chempedia.info