Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous-flow hydride/vapour generation

Table 5.3 sets out the advantages and disadvantages of the batch and continuous flow techniques. The introduction of continuous-flow hydride/vapour-generation has substantially advanced the value and acceptance of the technique for trace elemental analysis. Appfied Research Laboratories (now part of Fisons Elemental), P.S. Analytical and Varian have all introduced continuous-flow hydride/vapour-generation systems, whilst Perkin Ehner has used the flow injection modification to automate the techniques with their instrumentation. [Pg.143]

Figure S.2 shows a schematic diagram of the automatic hydride/vapour-generator system designed by P.S. Analytical. This has been widely used to determine hydrideforming elements, notably arsenic, selenium, bismuth, tellurium and antimony, in a wide range of sample types. To provide a wide range of analyses on a number of matrices the chemistry must be very well defined and consistent. Goulden and Brooksbank s automated continuous-flow system for the determination of selenium in waste water was improved by Dennis and Porter to lower the detection levels and increase relative precision [10, 11]. The system described by Stockwell [9] has been specifically developed in a commercial environment using the experience outlined by Dennis and Porter. Figure S.2 shows a schematic diagram of the automatic hydride/vapour-generator system designed by P.S. Analytical. This has been widely used to determine hydrideforming elements, notably arsenic, selenium, bismuth, tellurium and antimony, in a wide range of sample types. To provide a wide range of analyses on a number of matrices the chemistry must be very well defined and consistent. Goulden and Brooksbank s automated continuous-flow system for the determination of selenium in waste water was improved by Dennis and Porter to lower the detection levels and increase relative precision [10, 11]. The system described by Stockwell [9] has been specifically developed in a commercial environment using the experience outlined by Dennis and Porter.
Hydride/vapour generation techniques provide extremely good sensitivity. When coupled to continuous flow methodologies for use in routine analysis, simple and reliable analytical techniques are provided. TTie extension of chemistries and sample transfer systems to provide analytical protocols to cope with a wider range of elemental analyses should be pursued in the search for lower detection levels. While multi-element techniques offer very low levels of detection, the use of specific single element analytical instruments with detection capabihties similar to those described above may be the best route for routine laboratories with high sample throughput. [Pg.149]

A different approach to the CV generation was utilized by Tao and Miyazaki (1991), who reduced the sample with borotetrahydride in a continuous flow system, and used porous PTFE tubing as a gas-liquid separator. Disturbing gaseous hydrogen and water vapour, diffusing together with Hg(0) and metal hydrides, were removed in a hollow fiber... [Pg.427]

A flame AAS (FAAS) detector can monitor the GC effluent continuously to provide on-line analysis. However, as the gas flow rates for the flame are quite high, the residence time in the flame is short, and this can adversely affect the detection limits. Detection limits in the microgram range are usually achieved. Improved detection limits can be obtained if the additional techniques of hydride generation or cold vapour mercury detection are used as described in Section 4.6. [Pg.69]


See other pages where Continuous-flow hydride/vapour generation is mentioned: [Pg.149]    [Pg.42]    [Pg.78]    [Pg.173]   
See also in sourсe #XX -- [ Pg.143 , Pg.144 ]




SEARCH



Continuous flow

Generator, hydride

Hydride generation

Hydride generation continuous-flow

Vapour generation

© 2024 chempedia.info