Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugate addition molecular orbitals

When enantiomerically pure allyl p-tolyl sulfoxide is deprotonated and then treated with electrophilic 2-cyclopentenone, a conjugate addition occurs forming a new carbon-carbon bond with very high control of absolute stereochemistry (equation 25)65. See also Reference 48. Similarly, using more substituted enantiomerically pure allylic sulfoxides leads to virtually complete diastereocontrol, as exemplified by equations 26 and 27 the double bond geometry in the initial allylic sulfoxide governs the stereochemistry at the newly allylic carbon atom (compare equations 26 vs. 27)66. Haynes and associates67 rationalize this stereochemical result in terms of frontier molecular orbital considerations... [Pg.834]

In a, P-unsaturated carbonyl compounds and related electron-deficient alkenes and alkynes, there exist two electrophilic sites and both are prone to be attacked by nucleophiles. However, the conjugated site is considerably softer compared with the unconjugated site, based on the Frontier Molecular Orbital analysis.27 Consequently, softer nucleophiles predominantly react with a, (i-unsaturated carbonyl compounds through conjugate addition (or Michael addition). Water is a hard solvent. This property of water has two significant implications for conjugate addition reactions (1) Such reactions can tolerate water since the nucleophiles and the electrophiles are softer whereas water is hard and (2) water will not compete with nucleophiles significantly in such... [Pg.317]

When ene-nitrile oxidoisoquinolium betaine 131 was heated as a dilute solution in toluene to 120 °C (Scheme 1.15), near quantitative conversion to the cycloadduct 133, resulting from the undesired regioselectivity, was observed. While the near complete conversion to cycloadduct 133 of oxidoisoquinolinium betaine 131 indeed demonstrated complete avoidance of the conjugate addition pathway in favor of cycloaddition, initial production of undesired isomeric cycloadduct 133 (instead of 136) was disappointing. Notably, cycloadduct 133 is expected to be less kinetically favored based on frontier molecular orbital (FMO) analysis (assuming dipole HOMO-controlled cycloaddition) of the putative transition state. This result stands in contrast to the cycloaddition of nitroalkene oxidoisoquinolinium betaine... [Pg.17]

Reduction of benzenoid hydrocarbons with solvated electrons generated by the solution of an alkali metal in liquid ammonia, the Birch reaction [34], involves homogeneous electron addition to the lowest unoccupied 7t-molecular orbital. Protonation of the radical-anion leads to a radical intermediate, which accepts a further electron. Protonation of the delocalised carbanion then occurs at the point of highest charge density and a non-conjugated cyclohexadiene 6 is formed by reduction of the benzene ring. An alcohol is usually added to the reaction mixture and acts as a proton source. The non-conjugated cyclohexadiene is stable in the presence of... [Pg.243]

Molecular orbital theory also predicts that a nucleophile of the sulfide type will bond at the carbon terminus of a conjugated ene carbonyl system that is, the nucleophile will bond with the electrophile in the Michael addition mode of reaction (20). Thus, the reaction of polysulfide dianion with an enone represented by a chalcone may proceed initially in such a manner as shown in Scheme 2, which reproduces one of the several pathways... [Pg.79]

Pattern of molecular orbitals in a cyclic conjugated system. In a cyclic conjugated system, the lowest-lying MO is filled with two electrons. Each of the additional shells consists of two degenerate MOs, with space for four electrons. If a molecule has AN+2) pi electrons, it will have a filled shell. If it has (47V) electrons, there will be two unpaired electrons in two degenerate orbitals. [Pg.725]

Up-to-Date Treatment In addition to the classical reactions, this book covers many techniques and reactions that have more recently gained wide use among practicing chemists. Molecular-orbital theory is included early and used to explain electronic effects in conjugated and aromatic systems, pericyclic reactions, and ultraviolet spectroscopy. Carbon-13 NMR spectroscopy is treated as the routine tool it has become in most research laboratories, and the DEPT technique is included in this edition. Many of the newer... [Pg.1297]

Dienamines differ from simple enamines in that (i) there is an additional nucleophilic site at the -position and (ii) an equilibrium mixture of three isomeric dienamines is frequently formed, consisting of the linear s-trans isomer 1, the linear s-cis isomer 2 and the cross-conjugated isomer 31 (Scheme 1). A variety of factors influence the outcome of electrophilic attack on such an equilibrium system. Hiickel molecular orbital calculations indicate a significantly higher electron density at the -positions compared to the -positions of the dienamine system2 (Figure 1). [Pg.1535]


See other pages where Conjugate addition molecular orbitals is mentioned: [Pg.119]    [Pg.162]    [Pg.2]    [Pg.320]    [Pg.326]    [Pg.106]    [Pg.270]    [Pg.481]    [Pg.111]    [Pg.424]    [Pg.195]    [Pg.326]    [Pg.326]    [Pg.122]    [Pg.30]    [Pg.152]    [Pg.50]    [Pg.690]    [Pg.2]    [Pg.725]    [Pg.252]    [Pg.162]    [Pg.53]    [Pg.688]    [Pg.403]    [Pg.79]    [Pg.301]    [Pg.448]    [Pg.725]    [Pg.279]    [Pg.230]    [Pg.195]    [Pg.38]    [Pg.972]    [Pg.326]    [Pg.486]    [Pg.326]    [Pg.88]    [Pg.541]    [Pg.787]   
See also in sourсe #XX -- [ Pg.889 ]




SEARCH



Conjugated diene, 1,2-addition molecular orbitals

Molecular addition

Molecular conjugation

© 2024 chempedia.info