Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Configuration interaction Slater determinants

HyperChem uses single determinant rather than spin-adapted wave functions to form a basis set for the wave functions in a configuration interaction expansion. That is, HyperChem expands a Cl wave function, in a linear combination of single Slater determ in ants... [Pg.235]

As computational facilities improve, electronic wavefunctions tend to become more and more complicated. A configuration interaction (Cl) calculation on a medium-sized molecule might be a linear combination of a million Slater determinants, and it is very easy to lose sight of the chemistry and the chemical intuition , to say nothing of the visualization of the results. Such wavefunctions seem to give no simple physical picture of the electron distribution, and so we must seek to find ways of extracting information that is chemically useful. [Pg.99]

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

This is perhaps the easiest method to understand. It is based on the variational principle (Appendix B), analogous to the HF method. The trial wave function is written as a linear combination of determinants with the expansion coefficients determined by requiring that the energy should be a minimum (or at least stationary), a procedure known as Configuration Interaction (Cl). The MOs used for building the excited Slater determinants are taken from a Hartree-Fock calculation and held fixed. Subscripts S, D, T etc. indicate determinants which are singly, doubly, triply etc. excited relative to the... [Pg.101]

Here we derive the conditions of orbital phase for the cyclic orbital interactions. The A B delocalization is expressed by the interaction between the ground configuration C Q and the electron-transferred configuration tBp(A B) (Scheme 3). A pair of electrons occupies each bonding orbital in which is expressed by a single Slater determinant 0 ... [Pg.87]

Cl methods [21] add a certain number of excited Slater determinants, usually selected by the excitation type (e.g. single, double, triple excitations), which were initially not present in the CASSCF wave function, and treat them in a non-perturbative way. Inclusion of additional configurations allows for more degrees of freedom in the total wave function, thus improving its overall description. These methods are extremely costly and therefore, are only applicable to small systems. Among this class of methods, DDCI (difference-dedicated configuration interaction) [22] and CISD (single- and double excitations) [21] are the most popular. [Pg.156]

The difference between the Hartree-Fock energy and the exact solution of the Schrodinger equation (Figure 60), the so-called correlation energy, can be calculated approximately within the Hartree-Fock theory by the configuration interaction method (Cl) or by a perturbation theoretical approach (Mpller-Plesset perturbation calculation wth order, MPn). Within a Cl calculation the wave function is composed of a linear combination of different Slater determinants. Excited-state Slater determinants are then generated by exciting electrons from the filled SCF orbitals to the virtual ones ... [Pg.588]

Another class of methods uses more than one Slater determinant as the reference wave function. The methods used to describe electron correlation within these calculations are similar in some ways to the methods listed above. These methods include multiconfigurational self-consistent field (MCSCF), multireference single and double configuration interaction (MRDCI), and /V-clcctron valence state perturbation theory (NEVPT) methods.5... [Pg.24]

One more quantum number, that relating to the inversion (i) symmetry operator can be used in atomic cases because the total potential energy V is unchanged when ah of the electrons have their position vectors subjected to inversion (i r = -r). This quantum number is straightforward to determine. Because each L, S, Ml, Ms, H state discussed above consist of a few (or, in the case of configuration interaction several) symmetry adapted combinations of Slater determinant functions, the effect of the inversion operator on such a wavefunction P can be determined by ... [Pg.189]

Based on first principles. Used for rigorous quantum chemistry, i. e., for MO calculations based on Slater determinants. Generally, the Schrodinger equation (Hy/ = Ey/) is solved in the BO approximation (see Born-Oppenheimer approximation) with a large but finite basis set of atomic orbitals (for example, STO-3G, Hartree-Fock with configuration interaction). [Pg.180]

The HF (Hartree-Fock) Slater determinant is an inexact representation of the wavefunction because even with an infinitely big basis set it would not account fully for electron correlation (it does account exactly for Pauli repulsion since if two electrons had the same spatial and spin coordinates the determinant would vanish). This is shown by the fact that electron correlation can in principle be handled fully by expressing the wavefunction as a linear combination of the HF determinant plus determinants representing all possible promotions of electrons into virtual orbitals full configuration interaction. Physically, this mathematical construction permits the electrons maximum freedom in avoiding one another. [Pg.640]

There are two ways to improve the accuracy in order to obtain solutions to almost any degree of accuracy. The first is via the so-called self-consistent field-Hartree-Fock (SCF-HF) method, which is a method based on the variational principle that gives the optimal one-electron wave functions of the Slater determinant. Electron correlation is, however, still neglected (due to the assumed product of one-electron wave functions). In order to obtain highly accurate results, this approximation must also be eliminated.6 This is done via the so-called configuration interaction (Cl) method. The Cl method is again a variational calculation that involves several Slater determinants. [Pg.47]


See other pages where Configuration interaction Slater determinants is mentioned: [Pg.63]    [Pg.131]    [Pg.255]    [Pg.235]    [Pg.235]    [Pg.190]    [Pg.120]    [Pg.68]    [Pg.290]    [Pg.232]    [Pg.155]    [Pg.163]    [Pg.332]    [Pg.29]    [Pg.382]    [Pg.91]    [Pg.102]    [Pg.102]    [Pg.52]    [Pg.53]    [Pg.24]    [Pg.238]    [Pg.92]    [Pg.289]    [Pg.145]    [Pg.190]    [Pg.51]    [Pg.124]    [Pg.373]    [Pg.539]    [Pg.13]    [Pg.201]    [Pg.10]    [Pg.64]    [Pg.191]    [Pg.407]   
See also in sourсe #XX -- [ Pg.150 , Pg.151 , Pg.188 , Pg.189 , Pg.190 , Pg.191 ]




SEARCH



Configuration Interaction

Configuration determination

Configurational interaction

Slater

Slater determinants

Slater determination

© 2024 chempedia.info