Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductor-polarized continuum model CPCM

Over the last years, the basic concepts embedded within the SCRF formalism have undergone some significant improvements, and there are several commonly used variants on this idea. To exemplify the different methods and how their results differ, one recent work from this group [52] considered the sensitivity of results to the particular variant chosen. Due to its dependence upon only the dipole moment of the solute, the older approach is referred to herein as the dipole variant. The dipole method is also crude in the sense that the solute is placed in a spherical cavity within the solute medium, not a very realistic shape in most cases. The polarizable continuum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately mimics the shape of the molecule, created by a series of overlapping spheres. The reaction field is represented by an apparent surface charge approach. The standard PCM approach utilizes an integral equation formulation (IEF) [56,57], A variant of this method is the conductor-polarized continuum model (CPCM) [58] wherein the apparent charges distributed on the cavity surface are such that the total electrostatic potential cancels on the surface. The self-consistent isodensity PCM procedure [59] determines the cavity self-consistently from an isodensity surface. The UAHF (United Atom model for Hartree-Fock/6-31 G ) definition [60] was used for the construction of the solute cavity. [Pg.410]

Generalized Bom (GB) approach. The most common implicit models used for small molecules are the Conductor-Like Screening Model (COSMO) [77,78], the DPCM [79], the Conductor-Like Modification to the Polarized Continuum Model (CPCM) [80,81], the Integral Equation Formalism Implementation of PCM (IEF-PCM) [82] PB models, and the GB SMx models of Cramer and Truhlar [23,83-86]. The newest Minnesota solvation models are the SMD universal Solvation Model based on solute electron density [26] and the SMLVE method, which combines the surface and volume polarization for electrostatic interactions model (SVPE) [87-89] with semiempirical terms that account for local electrostatics [90]. Further details on these methods can be found in Chapter 11 of Reference [23]. [Pg.126]

In 1999, Quast found dipolar and polarizable solvents such as lV,iV -dimethylprop-ylene urea (DMPU) strongly affect and even may reverse the relative stabilities of the localized and delocalized structures of 4,8-diphenylsemibullvalene-2,6-dicarboni-trile. The author calculated electrical dipole and quadrupole moments and molecular polarizabilities using the B3LYP/6-31G method and computed solvation energies with the conductor-like polarized continuum model (CPCM). The results indicate that the solvent effects are due to the greater polarity and polarizability of the delocalized structures relative to the localized structures (Fig. 4.10) [10]. [Pg.113]

In addition to SMx and the cluster-continuum model, other continuum models have also been used to study reactions in liquids, including the polarized continuum model [133-135] (PCM), the conductor-like screening model (COSMO [136] and COSMO-RS [137,138]), the generalized COSMO [139] (GCOSMO) model, conductorlike PCM [140] (CPCM), and isodensity PCM [141] (IPCM). [Pg.352]

The cluster-continuum moder iUuslrated in scheme 1 was used to simulate the most common electrolytes of LIBs. The supra-molecular cluster applied to the inner ring (scheme 1) incorporates the mutual effect between salt and solvent molecules by including the first solvation shell of the salt. Due to the minor effect that the salt anion XT has on the reductive behavior of solvent molecules coordinated with Li, XT and the surrounding solvent molecules are not discussed in the current chapter. The bulk solvent effect in the second ring of scheme 1 is treated by polarized continuum models, such as PCM, conductor-like PCM (CPCM), isodensity PCM (IPCM), and self-consistent isodensity PCM (SCl-PCM), which were developed on the basis of the Onsager reaction field theory and are recognized to provide reliable results for systems without specific interactions such as hydrogen bond. [Pg.229]

For solvation of small molecules, the polarizable continuum model (PCM) and its variants have been widely used for calculation of solvation energy. The conductor-like PCM (CPCM) model gives a concise formulation of solvent effect, in which the solvent s response to the solute polarization is represented by the presence of induced surface charges distributed on the solute-solvent interface. In this formulation, no volume polarization (extension of solute s electron distribution into the solvent region) is allowed. The induced surface charge counterbalances the electrostatic potential on the interface generated by the solute molecule. [Pg.341]


See other pages where Conductor-polarized continuum model CPCM is mentioned: [Pg.241]    [Pg.175]    [Pg.527]    [Pg.55]   
See also in sourсe #XX -- [ Pg.410 ]




SEARCH



CPCM

CPCM model

Conductor models

Conductor-polarized continuum model

Continuum modeling

Continuum modelling

Model polarization

Polarization continuum

Polarization continuum model

Polarized continuum model

© 2024 chempedia.info