Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensed phases experimental studies

In recent years, there have been many significant advances in our models for the dynamics for proton transfer. However, only a limited number of experimental studies have served to probe the validity of these models for bimolecular systems. The proton-transfer process within the benzophenone-AL A -di methyl aniline contact radical IP appears to be the first molecular system that clearly illustrates non-adiabatic proton transfer at ambient temperatures in the condensed phase. The studies of Pines and Fleming on napthol photoacids-carboxylic base pairs appear to provide evidence for adiabatic proton transfer. Clearly, from an experimental perspective, the examination of the predictions of the various theoretical models is still in the very early stages of development. [Pg.91]

Evidently, the existence of electron attachment to vdW molecules compels us to reinterpret more or less various experimental data obtained previously. Furthermore, because such processes must be more important in dense gases or in the condensed phase, the studies of those processes will provide insight as to the effect of the density on reactions involving electrons or, generally, on the electron-molecule interaction processes [78],... [Pg.124]

There has been much activity in the study of monolayer phases via the new optical, microscopic, and diffraction techniques described in the previous section. These experimental methods have elucidated the unit cell structure, bond orientational order and tilt in monolayer phases. Many of the condensed phases have been classified as mesophases having long-range correlational order and short-range translational order. A useful analogy between monolayer mesophases and die smectic mesophases in bulk liquid crystals aids in their characterization (see [182]). [Pg.131]

For very fast reactions, the competition between geminate recombmation of a pair of initially fomied reactants and its escape from the connnon solvent cage is an important phenomenon in condensed-phase kinetics that has received considerable attention botli theoretically and experimentally. An extremely well studied example is the... [Pg.860]

Condensed phase vibrational or vibronic lineshapes (vibronic transitions create vibrational excitations of electronic excited states) rarely provide infonnation about VER (see example C3.5.6.4). Experimental measurements of VER need much more than just the vibrational spectmm. The earliest VER measurements in condensed phases were ultrasonic attenuation studies of liquids [15], which provided an overall relaxation time for slowly (>10 ns) relaxing small molecule liquids. [Pg.3034]

To describe hypergolic heating, Anderson and Brown (A10) proposed a theoretical model based upon spontaneous exothermic heterogeneous reactions between the reactive oxidizer and a condensed phase at the gas-solid interface. In these studies, the least complex case was considered, i.e., the one in which the solid phase is instantaneously exposed to a stagnant (nonflowing) gaseous oxidizer environment. This situation can be achieved experimentally provided the sample to be tested is suddenly injected into the desired environment in a manner designed to minimize gas flow. [Pg.16]

During the course of exploratory experimentation involved in the preparation of 8-242pU203, some limited oxygen potential measurements over Pu02-X fluorite phase were made at 1750 and 2050 K. The transpiration method was used for this study because, for a given temperature, the composition of the condensed phase can be fixed by appropriate choice of oxygen potential (via H2/... [Pg.123]

Computer simulations therefore have several inter-related objectives. In the long term one would hope that molecular level simulations of structure and bonding in liquid crystal systems would become sufficiently predictive so as to remove the need for costly and time-consuming synthesis of many compounds in order to optimise certain properties. In this way, predictive simulations would become a routine tool in the design of new materials. Predictive, in this sense, refers to calculations without reference to experimental results. Such calculations are said to be from first principles or ab initio. As a step toward this goal, simulations of properties at the molecular level can be used to parametrise interaction potentials for use in the study of phase behaviour and condensed phase properties such as elastic constants, viscosities, molecular diffusion and reorientational motion with maximum specificity to real systems. Another role of ab initio computer simulation lies in its interaction... [Pg.4]

The Volta potential is defined as the difference between the electrostatic outer potentials of two condensed phases in equilibrium. The measurement of this and related quantities is performed using a system of voltaic cells. This technique, which in some applications is called the surface potential method, is one of the oldest but still frequently used experimental methods for studying phenomena at electrified solid and hquid surfaces and interfaces. The difficulty with the method, which in fact is common to most electrochemical methods, is lack of molecular specificity. However, combined with modem surface-sensitive methods such as spectroscopy, it can provide important physicochemical information. Even without such complementary molecular information, the voltaic cell method is still the source of much basic electrochemical data. [Pg.13]

Although coherent control is now a mature field, much remains to be accomplished in the study of the channel phase. There is no doubt that coherence plays an important role in large polyatomic molecules as well as in dissipative systems. To date, however, most of the published research on the channel phase has focused on isolated atoms and diatomic molecules, with very few studies addressing the problems of polyatomic and solvated molecules. The work to date on polyatomic molecules has been entirely experimental, whereas the research on solvated molecules has been entirely theoretical. It is important to extend the experimental methods from the gas to the condensed phase and hence explore the theoretical predictions of Section VC. Likewise interesting would be theoretical and numerical investigations of isolated large polyatomics. A challenge to future research would be to make quantitative comparison of experimental and numerical results for the channel phase. This would require that we address a sufficiently simple system, where both the experiment and the numerical calculation could be carried out accurately. [Pg.185]

As already mentioned, the experimental studies were restricted to singly charged ions. While singly charged ions are involved in the majority of the important condensed-phase ion chemistry, there are many important processes involving multiply charged ions. Thus, doubly charged ions such as Mg2+, Ca2+, Fe2+, Co2+, Ni2+, Cu2+, etc. are of paramount importance in condensed-phase chemistry and biochemistry. [Pg.260]

A variety of experimental methods has been used to study the thermal chemistry of the unsaturated iron fragments produced by photolysis. For example, regeneration of 1Fe(CO)s was observed upon heating low-temperature matrices in which Fe(CO)5 had been photolyzed (35). These condensed-phase reactions are rather complex, as in some cases, components of the inert matrix may form adducts Fe(C0)4L or Fe(CO)sL (L = N2, Xe, CH4), so that the reaction observed is not simply CO addition to an unsaturated iron tetracarbonyl fragment. The same reactions were studied in the gas phase, using flash... [Pg.578]

This part includes a discussion of the main experimental methods that have been used to study the energetics of chemical reactions and the thermodynamic stability of compounds in the condensed phase (solid, liquid, and solution). The only exception is the reference to flame combustion calorimetry in section 7.3. Although this method was designed to measure the enthalpies of combustion of substances in the gaseous phase, it has very strong affinities with the other combustion calorimetric methods presented in the same chapter. [Pg.83]

Barriers for reaction (7.1), calculated at a wide variety of levels, are presented in Table 6.14. The theoretical results [41] are compared with the experimental barriers obtained from condensed phase (21.3 kJ/mol) [40, 42] and gas-phase (25.7 kJ/mol) [43] studies, back-corrected for temperature and zero-point energy effects [41, 44],... [Pg.181]

The general approach is illustrated in detail for the case of aqueous ferrous and ferric ions, and the calculated rate constant and activation parameters are found to be in good agreement with the available experimental data. The formalisms we have employed in studying such complicated condensed phase processes necessarily rely on numerous approximations. Furthermore, some empirical data have been used in characterizing the solvated ions. We emphasize, nevertheless, that (1) none of the parameters were obtained from kinetic data, and (2) this is, as far as we are aware, the first such theoretical determination to be based on fully Ab initio electronic matrix elements, obtained from large scale molecular orbital (MO) calculations. A molecular orbital study of the analogous hexaaquo chromium system has been carried out by Hush, but the calculations were of an approximate, semi-empirical nature, based in part on experi-... [Pg.256]


See other pages where Condensed phases experimental studies is mentioned: [Pg.186]    [Pg.43]    [Pg.129]    [Pg.183]    [Pg.1968]    [Pg.21]    [Pg.29]    [Pg.397]    [Pg.454]    [Pg.201]    [Pg.1138]    [Pg.28]    [Pg.57]    [Pg.345]    [Pg.380]    [Pg.397]    [Pg.100]    [Pg.220]    [Pg.247]    [Pg.265]    [Pg.100]    [Pg.267]    [Pg.293]    [Pg.580]    [Pg.179]    [Pg.339]    [Pg.180]    [Pg.225]    [Pg.124]    [Pg.879]    [Pg.472]    [Pg.262]    [Pg.267]   
See also in sourсe #XX -- [ Pg.152 , Pg.153 , Pg.154 , Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 ]




SEARCH



Condensed phases

Experimental studies

Phase 1-4 studies

Phase condensation

© 2024 chempedia.info