Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation ester elimination

Berthelot found that when two organic molecules condense with elimination of water, the b.p. of the product is 100°-120° lower than the sum of the b.ps. of the two compounds. It is curious that the b.ps of the methyl ketones, methyl esters, and corresponding acid chlorides are very close... [Pg.299]

Generation of oxo-ligands by non-hydrolytic condensation and elimination of an ester from an unstable tin carboxylatoalkoxide. [Pg.254]

In an aldol addition, the enolate of an aldehyde or a ketone reacts with the carbonyl carbon of a second molecule of aldehyde or ketone, forming a j8-hydroxyaldehyde or a jS-hydroxyketone. The new C—C bond forms between the a-carbon of one molecule and the carbon that formerly was the carbonyl carbon of the other molecule. The product of an aldol addition can be dehydrated to give an aldol condensation product. In a Claisen condensation, the enolate of an ester reacts with a second molecule of ester, eliminating an OR group to form a j8-keto ester. A Dieckmann condensation is an intramolecular Claisen condensation. A Robinson annulation is a ring-forming reaction in which a Michael reaction and an intramolecular aldol addition occur sequentially. [Pg.829]

Claisen condensation Addition-elimination of ester enolates with esters, giving )3-iliciirbonyl compounds. [Pg.255]

In a Claisen condensation, the enolate ion of an ester reacts with a second molecule of ester, eliminating an OR group to form a /3-keto ester. A Dieckmann condensation is an intramolecular Claisen condensation. [Pg.895]

Depending on the reaction system, that is, precursor and solvent, several aprotic condensation reactions have been established (Scheme 2.3). Alkyl halide elimination involves the condensation between a metal alkoxide and a metal halide (Scheme 2.3a), ester elimination occurs between metal carboxylates and metal alkoxides, for example, by transesterification (Scheme 2.3b), and ether... [Pg.50]

Scheme 2.3 Condensation mechanisms (a) alkyl halide elimination (b) ester elimination and (c) ether elimination. Scheme 2.3 Condensation mechanisms (a) alkyl halide elimination (b) ester elimination and (c) ether elimination.
Claisen condensation Condensation of an ester with another ester, a ketone or a nitrile in the presence of sodium ethoxide, sodium or sodamidc, with the elimination of an alcohol. The result is the formation of a / -ketonic ester, ketone, or nitrile respectively, e.g. [Pg.101]

The Claisen condensation is initiated by deprotonation of an ester molecule by sodium ethanolate to give a carbanion that is stabilized, mostly by resonance, as an enolate. This carbanion makes a nucleophilic attack at the partially positively charged carbon atom of the e.ster group, leading to the formation of a C-C bond and the elimination ofan ethanolate ion, This Claisen condensation only proceeds in strongly basic conditions with a pH of about 14. [Pg.561]

This Reaction should be carefully distinguished from the Claisen Conden-tation, which is the condensation of an ester, under the influence of sodium ethoxide, with (i) another ester, (ii) a ketone, or (iii) a nitrile, with the elimination of alcohol. For details of this condensation, see Ethyl Acetoacetate, p. 264. [Pg.231]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

Methylsulfinyl enolates are more recently developed d -reagents. They are readily prepared from carboxylic esters and dimsyl anion. Methanesulfenic acid can be eliminated thermally after the condensation has taken place. An example is found in Bartlett s Brefeldin synthesis (P.A. Bartlett. 1978). [Pg.65]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

Furthermore, in analogy to the aldol reaction, a-chloro-a,3-unsaturated esters have been observed—likely the result of 3-elimination of water from the intermediate halohydrin. For example, when benzaldehyde is condensed with the enolate of 17, chloride 19 was obtained. ... [Pg.16]

The mechanism of the Fiesselmann reaction between methylthioglycolate and a,P-acetylenic esters proceeds via consecutive base-catalyzed 1,4-conjugate addition reactions to form thioacetal Enolate formation, as a result of treatment with a stronger base, causes a Dieckmann condensation to occur providing ketone 8. Elimination of methylthioglycolate and tautomerization driven by aromaticity provides the 3-hydroxy thiophene dicarboxylate 9. [Pg.185]

It is believed (54IZV47 72JPR353) that in the first stage the intermediate 282 is formed due to the addition of the CH acid to the enamine moiety with subsequent elimination of amine. The enol form of the intermediate 282 undergoes cyclization in two fashions, depending on the nature of substituent X. In the case of the ester (X = OMe) the attack is directed to the cyano group to form substituted 3-methoxycarbonyl-I//-pyridin-2-one (283) or its tautomer (2-hydroxy-3-methoxycarbonylpyridine). With the amide (X = NH2) intramolecular condensation leads to 3-cyano-l//-pyridin-2-one and its hydroxy tautomer (284). [Pg.226]

Tiazofurine (142) is an antimetabolite with antineoplastic activity. It preferentially affects leukemic lymphocytes over normal cells due to selective activation by formation of its adenine dinucleotide by transformed cells. Of the syntheses available, one starts by conversion of iniidate 138 to methyl 2,5-anhydroallonothioate (139). Next, condensation with ethyl 2-amino-2-cyanoac-etate leads to the thioamide which undergoes thiol addition to the nitrile function to produce the amminothiazolecarboxyester system of 140 directly. Sodium nitrite in aqueous hypophosphorus acid eliminates the superfluous amino group via the diazonium transformation to give 141. This synthesis of tiazofurine (142) concludes by ester amide exchange in methanolic ammonia [48]. [Pg.96]

Ester formation is an example of a condensation reaction in which two molecules combine to form a larger one and a small molecule is eliminated (Fig. 19.4). The reaction is catalyzed by a small amount of strong acid, such as sulfuric acid. In an esterification of a carboxylic acid and an alcohol, the eliminated molecule is H20. [Pg.878]

The same elimination strategy was used for the synthesis of the natural product (i )-(-)-dysidazirine 15 as is shown in Scheme 10 [23]. The requisite aziri-dine ester was prepared by treatment of sulfimine 19 with the lithium enolate of methyl bromoacetate. This reaction is a Darzens-type condensation leading to czs-M-sulfinylaziridine ester 20. The elimination of sulfenate was accomplished in the same manner as mentioned above (see Scheme 9). The natural product 15 (see Fig. 1) was obtained in 42% yield. Attempts to prepare azirinomycin 14 in a similar fashion all failed [23]. [Pg.101]


See other pages where Condensation ester elimination is mentioned: [Pg.262]    [Pg.330]    [Pg.349]    [Pg.262]    [Pg.187]    [Pg.187]    [Pg.153]    [Pg.202]    [Pg.202]    [Pg.112]    [Pg.262]    [Pg.644]    [Pg.22]    [Pg.365]    [Pg.240]    [Pg.394]    [Pg.376]    [Pg.21]    [Pg.277]    [Pg.199]    [Pg.3]    [Pg.115]    [Pg.32]    [Pg.362]    [Pg.1207]    [Pg.1327]    [Pg.1]    [Pg.114]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Elimination ester

© 2024 chempedia.info