Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes equatorial

Another demonstration of the size of the complexed alkyne comes from a synthesis of tautomycin intermediates. A tetrahydropyran 7.12 was found to exist predominantly with the alkynyl group axial. This was determined from the observation of a 1 Hz coupling constant between Ha and Hb (Scheme 7.4). After complexation with cobalt, a ring flip occurred to the tetrahydropyran 7.13 with a conformation having the alkynyl complex equatorial being favoured, with an Ha-Hb coupling constant of 6.5 Hz. [Pg.242]

An unactivated methyl group can be functionalized by the cyclopalladation of oximes. The equatorial methyl of geminal methyls in steroids or hexapyr-anosides is selectively aceto.xylated by the reaction of the palladation complex 523 of the 3-oxime with lead tetraacetate[467,468]. [Pg.96]

The common structural element in the crystal lattice of fluoroaluminates is the hexafluoroaluminate octahedron, AIF. The differing stmctural features of the fluoroaluminates confer distinct physical properties to the species as compared to aluminum trifluoride. For example, in A1F. all corners are shared and the crystal becomes a giant molecule of very high melting point (13). In KAIF, all four equatorial atoms of each octahedron are shared and a layer lattice results. When the ratio of fluorine to aluminum is 6, as in cryoHte, Na AlF, the AIFp ions are separate and bound in position by the balancing metal ions. Fluorine atoms may be shared between octahedrons. When opposite corners of each octahedron are shared with a corner of each neighboring octahedron, an infinite chain is formed as, for example, in TI AIF [33897-68-6]. More complex relations exist in chioUte, wherein one-third of the hexafluoroaluminate octahedra share four corners each and two-thirds share only two corners (14). [Pg.142]

Crystals of uranyl perchlorate, U02(C10[13093-00-0] have been obtained with six and seven hydration water molecules. The uranyl ion is coordinated with five water molecules (4) in the equatorial plane with a U—O(aquo) distance of 245 nm (2.45 E). The perchlorate anion does not complex the uranyl center. The unit cells contain two [0104] and one or two molecules of hydration water held together by hydrogen bonding (164). [Pg.326]

By a suitable choice of conditions (metal hydrides or metal/ammonia) ketones at the 1-, 2-, 4-, 6-, 7-, 11-, 12- and 20-positions in 5a-H steroids can be reduced to give each of the possible epimeric alcohols in reasonable yield. Hov/ever, the 3- and 17-ketones are normally reduced to give predominantly their -(equatorial) alcohols. Use of an iridium complex as catalyst leads to a high yield of 3a-alcohol, but the 17a-ol still remains elusive by direct reduction. [Pg.81]

The polyhedra of these complexes are actually flattened because the two trans U-0 bonds of the 002 group are shorter than the bonds to the remaining groups which form an equatorial plane. [Pg.1267]

A chiral titanium complex with 3-cinnamoyl-l,3-oxazolidin-2-one was isolated by Jagensen et al. from a mixture of TiCl 2(0-i-Pr)2 with (2R,31 )-2,3-0-isopropyli-dene-l,l,4,4-tetraphenyl-l,2,3,4-butanetetrol, which is an isopropylidene acetal analog of Narasaka s TADDOL [48]. The structure of this complex was determined by X-ray structure analysis. It has the isopropylidene diol and the cinnamoyloxazolidi-none in the equatorial plane, with the two chloride ligands in apical (trans) position as depicted in the structure A, It seems from this structure that a pseudo-axial phenyl group of the chiral ligand seems to block one face of the coordinated cinnamoyloxazolidinone. On the other hand, after an NMR study of the complex in solution, Di Mare et al, and Seebach et al, reported that the above trans di-chloro complex A is a major component in the solution but went on to propose another minor complex B, with the two chlorides cis to each other, as the most reactive intermediate in this chiral titanium-catalyzed reaction [41b, 49], It has not yet been clearly confirmed whether or not the trans and/or the cis complex are real reactive intermediates (Scheme 1.60). [Pg.39]

An X-ray structure of the complex formed between 3-cinnamoyl-l,3-oxazohdin-2-one and a chiral TADDOL-Ti(IV) complex (see Chapters 1 and 6 by Hayashi and Gothelf, respectively) has been characterized [16]. The structure of this complex has the chiral TADDOLate and cinnamoyloxazohdinone ligands coordinated to titanium in the equatorial plane and the two chloride ligands in the axial plane and is similar to A in Fig. 8.8. The chiral discrimination was proposed to be due to... [Pg.310]

Monosubstituted cyclohexanes are more stable with their substituent in an equatorial position, but the situation in disubstituted cyclohexanes is more complex because the steric effects of both substituents must be taken into account. All steric interactions in both possible chair conformations must be analyzed before deciding which conformation is favored. [Pg.124]

According to crystal analysis performed by Stomberg [173], Na2NbOF5 is made up of sodium ions and isolated NbOF52 complex ions and is similar in structure to FeWC>6. NbOFs2" polyhedrons comprise slightly distorted octahedrons that are located in one of two equivalent positions. The niobium atom is shifted 0.234 A from the equatorial plane towards the oxygen atom. [Pg.74]

The equatorial selectivity observed with organolithium reagents is enhanced in diethyl ether as the reaction solvent by the addition of lithium perchlorate (Table l)12. I3C-NMR studies47 indicate that the formation of a complex between lithium perchlorate and the carbonyl group, which also leads to a dramatic enhancement of the rate of the addition reaction, accounts for the increased diastereoselectivity. [Pg.9]


See other pages where Complexes equatorial is mentioned: [Pg.256]    [Pg.275]    [Pg.256]    [Pg.275]    [Pg.2090]    [Pg.59]    [Pg.82]    [Pg.83]    [Pg.85]    [Pg.60]    [Pg.288]    [Pg.326]    [Pg.330]    [Pg.111]    [Pg.19]    [Pg.67]    [Pg.68]    [Pg.89]    [Pg.229]    [Pg.234]    [Pg.234]    [Pg.263]    [Pg.381]    [Pg.391]    [Pg.395]    [Pg.452]    [Pg.541]    [Pg.571]    [Pg.687]    [Pg.995]    [Pg.1085]    [Pg.1121]    [Pg.1274]    [Pg.101]    [Pg.103]    [Pg.265]    [Pg.178]    [Pg.111]    [Pg.18]    [Pg.76]    [Pg.480]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Equatorial

© 2024 chempedia.info