Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Columnar discotic liquid crystal phase

Figure C2.2.7. Schematic illustrating tire classification and nomenclature of discotic liquid crystal phases. For tire columnar phases, tire subscripts are usually used in combination witli each otlier. For example, denotes a rectangular lattice of columns in which tire molecules are stacked in a disordered manner (after [33])... Figure C2.2.7. Schematic illustrating tire classification and nomenclature of discotic liquid crystal phases. For tire columnar phases, tire subscripts are usually used in combination witli each otlier. For example, denotes a rectangular lattice of columns in which tire molecules are stacked in a disordered manner (after [33])...
Hence, columnar (discotic) liquid crystals with an aromatic central core are of significant interest for application in OLEDs as an HTL, if the columnar phase can be aligned with the columns orthogonal to the substrate surface, i.e. the flow of holes from the anode to the ETL and/or emission layer is... [Pg.160]

J.P. Bramble, D.J. Tate, D.J. Revill, K.H. Sheikh, J.R. Henderson, F. Liu, X. Zeng, G. Ungar, R.J. Bushby, S.D. Evans, Planar alignment of columnar discotic liquid crystals by isotropic phase dewetting on chemically patterned surfaces. Adv. Funct. Mater. 20,914-920 (2010)... [Pg.255]

Figure 1 General structures of calamitic and discotic thermotropic liquid crystals. (A) Layered calamitic smectic liquid crystal. The structures of the various types depend on the local packing of the molecules, the extent of the packing, and the orientation of the long axes with respect to the layers. (B) Calamitic nematic liquid crystal. The molecules have no long-range order, and are only orientationally ordered. (C) Ordered columnar discotic liquid crystal. Disk-like molecules form ordered or disordered columns different column packings give rise to various mesophase structures. (D) Nematic-discotic liquid crystal phase. The disk-like molecules are only orientationally ordered. Figure 1 General structures of calamitic and discotic thermotropic liquid crystals. (A) Layered calamitic smectic liquid crystal. The structures of the various types depend on the local packing of the molecules, the extent of the packing, and the orientation of the long axes with respect to the layers. (B) Calamitic nematic liquid crystal. The molecules have no long-range order, and are only orientationally ordered. (C) Ordered columnar discotic liquid crystal. Disk-like molecules form ordered or disordered columns different column packings give rise to various mesophase structures. (D) Nematic-discotic liquid crystal phase. The disk-like molecules are only orientationally ordered.
As discussed in Chaps. 3 and 4, (columnar) discotic liquid crystals are oriented in columns separated by molten aliphatic chains and, consequently, they can conduct charge efficiently along the channels in one dimension. The organization of the different phases is described elsewhere [19, 20] and the efficiency of charge transport can be directly related to the short intermolecular spacing and order of different types of mesophase, with few exceptions [21]. For example, hole mobility is higher in ordered, rather than disordered, columnar phases and even higher in helically-ordered phases where molecular rotation is suppressed about the columnar axis [22], Some mesomorphic derivatives of hexabenzocoronene, for example hexaphenyl-substituted hexabenzocoronene (HBCn, see Table 8.2 for chemical structures of all discotic materials discussed here) have hole mobilities... [Pg.225]

McMillan s model [71] for transitions to and from tlie SmA phase (section C2.2.3.2) has been extended to columnar liquid crystal phases fonned by discotic molecules [36, 103]. An order parameter tliat couples translational order to orientational order is again added into a modified Maier-Saupe tlieory, tliat provides tlie orientational order parameter. The coupling order parameter allows for tlie two-dimensional symmetry of tlie columnar phase. This tlieory is able to account for stable isotropic, discotic nematic and hexagonal columnar phases. [Pg.2560]

The prime requirement for the formation of a thermotropic liquid crystal is an anisotropy in the molecular shape. It is to be expected, therefore, that disc-like molecules as well as rod-like molecules should exhibit liquid crystal behaviour. Indeed this possibility was appreciated many years ago by Vorlander [56] although it was not until relatively recently that the first examples of discotic liquid crystals were reported by Chandrasekhar et al. [57]. It is now recognised that discotic molecules can form a variety of columnar mesophases as well as nematic and chiral nematic phases [58]. [Pg.93]

Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbach KH, Ringsdorf H, Haarer D (1994) Fast photoconduction in the highly ordered columnar phase of a discotic liquid-crystal. Nature 371 141... [Pg.63]

Just as chiral induction can be realised in discotic liquid crystals, it can also be realised in assemblies of disc-like molecules or disc-like aggregates. As far as molecules are concerned, C3-symmetrical trisamides (Fig. 15), which actually exhibit discotic liquid crystalline phases, also form chiral columnar stacks through it-it interactions when dissolved in apolar solvents, which are depicted schematically in Fig. 15 [121]. An achiral compound of this type (15) exhibits no optical activity in dodecane, but when the compound is dissolved in the chiral CR)-(-)-2,6-dimelhyloctanc significant Cotton effects (only slightly less intense than those observed in a chiral derivative) are detected. The chiral disc-like trisamide 16 can also be used as a dopant at concentrations as low as 2.5% to induce supramolecular chirality in the stacks of achiral compound. In this case, the presence of the additional hydrogen... [Pg.271]

In contrast to calamitic mesogens, discotic liquid crystals are built from disk-like molecules that can arrange into different structures, such as the discotic nematic mesophase, the discotic columnar mesophase, or the discotic hexagonal meso-phase. [Pg.77]

Understanding the organization of disc-shaped mesogens in columnar phases is of practical interest because of their useful optoelectronic applications [168-170]. It will be instructive to explore the role of fluctuations in influencing transport properties of thermotropic discotic liquid crystals—in particular, in the columnar phase. [Pg.314]

Discotic liquid crystals came to prominence in the late 1970s when Chandrasekhar, Sadashiva, and Suresh reported the discovery of this new class of liquid-crystalline molecules, which were found to form columnar phases. The first of these, a hexaalkanoate of benzene, is shown in Figure 9. There then followed a rather unfortunate confusion of nomenclature in which the phases formed by discotic molecules were themselves referred to as discotic, carrying the abbreviation D. A liquid-crystal phase must be characterized by its symmetry and organization and not the shape of the molecules of which it is composed this is particularly important in columnar systems as many non-discotic molecules exhibit columnar phases. Indeed, columnar mesophases have been recognized for many years and studies date back to at least the 1960s with the work of Skoulios with various metal soaps. " Therefore, columnar phases take the abbreviation Col followed by some descriptor that describes the symmetry of the phase. [Pg.202]

While it is in discotic liquid crystals that the formation of columnar phases is most readily recognized supra), there exists a family of non-disk-like mesogens, the polycatenar liquid crystals, where these mesophases are also formed extensively. As will be seen from their shape, this observation is of some interest, but it is the fact that certain polycatenar materials can, within a homologous series, show mesomorphism characteristic of both rod-like and disklike mesogens that makes them particularly interesting. [Pg.203]

The first liquid crystals of disc-shaped molecules, now generally referred to as discotic liquid crystals, were prepared and identified in 1977. Since then a large number of discotic compounds have been synthesized and a variety of mesophases discovered. Structurally, most of them fall into two distinct categories, the columnar and the nematic. The columnar phase in its simplest form consists of discs stacked one on top of the other aperiodically to form liquid-like columns, the different columns constituting a two-dimensional lattice (fig. 1.1.8 (a)). The structure is somewhat similar to that of the hexagonal phase of soap-water and other lyotropic... [Pg.8]

Fig. 6.4.2. The discotic liquid crystal appearing in the isotropic phase when a sample is cooled very slowly. The growth pattern is diagnostic of the hexagonal symmetry of the columnar structure (a) Queguiner, Zann and Dubois , (b)... Fig. 6.4.2. The discotic liquid crystal appearing in the isotropic phase when a sample is cooled very slowly. The growth pattern is diagnostic of the hexagonal symmetry of the columnar structure (a) Queguiner, Zann and Dubois , (b)...
Just as chiral induction can be realized in discotic liquid crystals, so it can in assemblies of disc-like molecules or disc-like aggregates. As far as molecules are concerned, C3-symmetrical fm-amides (Fig. 6), which exhibit discotic liquid-crystalline phases, also form chiral columnar stacks through n-n interactions when dissolved in apolar solvents,which are depicted schematically in... [Pg.247]

While it is in discotic liquid crystals that the formation of columnar phases is most readily recognized (vide supra), there exists a family of non-disk-like mesogens, the polycatenar liquid... [Pg.477]


See other pages where Columnar discotic liquid crystal phase is mentioned: [Pg.44]    [Pg.50]    [Pg.2786]    [Pg.667]    [Pg.1180]    [Pg.575]    [Pg.261]    [Pg.241]    [Pg.43]    [Pg.375]    [Pg.378]    [Pg.389]    [Pg.452]    [Pg.203]    [Pg.363]    [Pg.877]    [Pg.460]    [Pg.105]    [Pg.131]    [Pg.846]    [Pg.253]    [Pg.291]    [Pg.388]    [Pg.365]    [Pg.209]    [Pg.214]   
See also in sourсe #XX -- [ Pg.845 , Pg.846 ]

See also in sourсe #XX -- [ Pg.845 , Pg.846 ]




SEARCH



Columnar discotic

Columnar discotics

Columnar liquid crystals

Crystal phases

Discotic liquid crystals

Discotic liquid crystals discotics

Discotics

Liquid crystal phase

Liquid crystals discotics

Liquid discotic

Phase columnar

Phase discotic

© 2024 chempedia.info