Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Codon-anticodon

It has been known for some time that tetracyclines are accumulated by bacteria and prevent bacterial protein synthesis (Fig. 4). Furthermore, inhibition of protein synthesis is responsible for the bacteriostatic effect (85). Inhibition of protein synthesis results primarily from dismption of codon-anticodon interaction between tRNA and mRNA so that binding of aminoacyl-tRNA to the ribosomal acceptor (A) site is prevented (85). The precise mechanism is not understood. However, inhibition is likely to result from interaction of the tetracyclines with the 30S ribosomal subunit because these antibiotics are known to bind strongly to a single site on the 30S subunit (85). [Pg.181]

What is the importance of this enzyme family for the biogenesis problem These enzymes form the link between the protein world and the nucleic acid world . They catalyse the reaction between amino acids and transfer RNA molecules, which includes an activation step involving ATR The formation of the peptide bond, i.e., the actual polycondensation reaction, takes place at the ribosome and involves mRNA participation and process control via codon-anticodon interaction. [Pg.128]

Figure 3 Cognate and near-cognate codon-anticodon interactions. The anticodon ioop of tRNA is shown as an example interacting with various codons on the mRNA. In correct, cognate codon-anticodon pairings, two Watson-Crick base pairs can be formed in the first two positions while the third position contains either a Watson-Crick or a wobble base pair. Figure 3 Cognate and near-cognate codon-anticodon interactions. The anticodon ioop of tRNA is shown as an example interacting with various codons on the mRNA. In correct, cognate codon-anticodon pairings, two Watson-Crick base pairs can be formed in the first two positions while the third position contains either a Watson-Crick or a wobble base pair.
In order to allow for translocation of the tRNA-mRNA complex, the ribosome will have to undergo conformational changes as well. The contacts described above between the decoding center and the codon-anticodon helix as well as the base pairs between the SOS A and P loops and the tRNA acceptor stems will have... [Pg.370]

Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes). Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes).
These experiments make it clear that removing competition with release factors leads to more efficient incorporation of the desired amino acid. Unfortunately, the technology to incorporate nonstandard nucleotides into mRNAs coding for full-length proteins is not yet available. Alternatives that have been tested include using (i) a 4-nucleotide codon-anticodon pair, dubbed frame-shift suppression (Sect. 6.1), (ii) a rare codon, and (iii) cell-free extracts from organisms that are either deficient in a release factor (Sect. 5.1) or unable to translate one or more codons (Sect. 6.2). [Pg.89]

In an effort to reduce the competition encountered with naturally occurring tRNAs, even when rare codons are used, Hardesty and co-workers have devised a strategy based on 4-nucleotide codon-anticodon pairs [48]. An extra thymidine was inserted either 5 or 3 to the rare arginine codon AGG to yield TAGG... [Pg.90]

Now that we have specifically attached each amino acid to its cognate tRNA, we need to make the interface between each aminoacyl-tRNA and the correct triplet codon on mRNA. The aminoacyl moiety has nothing to do with this it is simply a matter of codon-anticodon recognition, which is shown schematically in figure 13.3. [Pg.173]

Codon-anticodon recognition between mRNA and the stem loop of tRNA on the ribosomal snrface brings one amino acid at a time for the formation of amide bonds at the top of ribosomal helix 44, a site known as the aminoacyl-tRNA site (A-site). It is not surprising that the A-site is also the binding site for... [Pg.225]


See other pages where Codon-anticodon is mentioned: [Pg.1085]    [Pg.1086]    [Pg.1086]    [Pg.1087]    [Pg.1087]    [Pg.287]    [Pg.221]    [Pg.358]    [Pg.359]    [Pg.359]    [Pg.360]    [Pg.360]    [Pg.361]    [Pg.362]    [Pg.362]    [Pg.364]    [Pg.364]    [Pg.364]    [Pg.365]    [Pg.370]    [Pg.372]    [Pg.376]    [Pg.376]    [Pg.376]    [Pg.377]    [Pg.377]    [Pg.89]    [Pg.91]    [Pg.87]    [Pg.120]    [Pg.122]    [Pg.183]    [Pg.194]    [Pg.210]    [Pg.211]    [Pg.215]    [Pg.215]    [Pg.221]    [Pg.227]    [Pg.227]    [Pg.152]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Anticodon

Codon

Codons anticodons

© 2024 chempedia.info