Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt hydrogenation catalysts

Preparation of Cobalt Hydrogenation Catalysts. K3Co(CN)6 was prepared following Brauer (8), HCo[P(OPh)3L was prepared following an Inorganic Synthesis procedure (9), and K3Co(CN)5 was prepared following the procedure of Adamson (10). [Pg.180]

Recently another family of dendrimers has become commercially available. These polyamines were developed by Meijer and de Brabander-van den Berg of DSM Research and are based on Vogtle s initial synthesis [7]. In this case the troublesome reduction step was performed using a Raney cobalt hydrogenation catalyst and other process improvements have permitted this synthesis to be continued up to the fifth generation with multikilogram quantities available. [Pg.118]

An example of such recychng in a parallel reaction system is in the Oxo process for the production of C4 alcohols. Propylene and synthesis gas (a mixture of carbon monoxide and hydrogen) are first reacted to ra- and isobutyraldehydes using a cobalt-based catalyst. Two parallel reactions occur ... [Pg.38]

An early attempt to hydroformylate butenediol using a cobalt carbonyl catalyst gave tetrahydro-2-furanmethanol (95), presumably by aHybc rearrangement to 3-butene-l,2-diol before hydroformylation. Later, hydroformylation of butenediol diacetate with a rhodium complex as catalyst gave the acetate of 3-formyl-3-buten-l-ol (96). Hydrogenation in such a system gave 2-methyl-1,4-butanediol (97). [Pg.107]

The mixture of carbon monoxide and hydrogen is enriched with hydrogen from the water gas catalytic (Bosch) process, ie, water gas shift reaction, and passed over a cobalt—thoria catalyst to form straight-chain, ie, linear, paraffins, olefins, and alcohols in what is known as the Fisher-Tropsch synthesis. [Pg.62]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

Alternative means for removal of carbonyl sulfide for gas streams iavolve hydrogenation. For example, the Beavon process for removal of sulfur compounds remaining ia Claus unit tail gases iavolves hydrolysis and hydrogenation over cobalt molybdate catalyst resulting ia the conversion of carbonyl sulfide, carbon disulfide, and other sulfur compounds to hydrogen sulfide (25). [Pg.130]

When the Claus reaction is carried out in aqueous solution, the chemistry is complex and involves polythionic acid intermediates (105,211). A modification of the Claus process (by Shell) uses hydrogen or a mixture of hydrogen and carbon monoxide to reduce sulfur dioxide, carbonyl sulfide, carbon disulfide, and sulfur mixtures that occur in Claus process off-gases to hydrogen sulfide over a cobalt molybdate catalyst at ca 300°C (230). [Pg.144]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

In both processes the CO can be converted to CO2 by passing the gases and steam over an iron oxide or cobalt oxide catalyst at 400°C, thereby generating more hydrogen ... [Pg.38]

Trickle-bed operation is the oldest and the most commonly used its development is described in a recent publication (VI). Cobalt-molybdenum catalysts may be used at a temperature of 360°C and a pressure of 57 atm for the hydrogenation of straight-run gas oils. [Pg.75]

Hydroformylation is an important industrial process carried out using rhodium phosphine or cobalt carbonyl catalysts. The major industrial process using the rhodium catalyst is hydroformylation of propene with synthesis gas (potentially obtainable from a renewable resource, see Chapter 6). The product, butyraldehyde, is formed as a mixture of n- and iso- isomers the n-isomer is the most desired product, being used for conversion to butanol via hydrogenation) and 2-ethylhexanol via aldol condensation and hydrogenation). Butanol is a valuable solvent in many surface coating formulations whilst 2-ethylhexanol is widely used in the production of phthalate plasticizers. [Pg.110]

Catalysis. Beitel et al. (1997) have employed RAIRS to study in situ the co-adsorption behaviour of CO and hydrogen on single-crystal cobalt (0001) catalysts at pressures up to 300mbar and temperatures between 298 and 490 K. The behaviour of these adsorbates is of considerable importance in relation to their commercial importance as catalysts for the Fischer-Tropsch reaction in the... [Pg.44]

Hydrogenation was carried out with the assistance of an n-butyl lithium/cobalt octoate catalyst (6). It was necessary to determine the proper conditions for efficTent hydrogenation with minimal degradation (7). For the BIB polymer the Li/Co ratio used was 5/1 to obtain selective hydrogenation of the polybutadiene, while for the total hydrogenation of the BBB polymer, a ratio of 2.2/1 was satisfactory. NMR analysis showed better than 99% hydrogenation. [Pg.103]

Currently the reaction is carried out using cobalt based catalysts with severe penalties in terms of harsh operating conditions (80 bar CO/H2, 200°C). In addition, substantial loss of substrate (ca. 10%) to hydrogenation makes the overall selectivity to the linear alcohol ca. 80% [15]. Rhodium based systems are capable of giving higher selectivities (>90%) to the desired linear aldeyde product under milder conditions (20 bar, 100°C) [13]... [Pg.8]

Examples of Various Carbon Species on Cobalt FTS Catalysts along with Their Hydrogenation Temperatures... [Pg.57]


See other pages where Cobalt hydrogenation catalysts is mentioned: [Pg.186]    [Pg.186]    [Pg.458]    [Pg.428]    [Pg.206]    [Pg.380]    [Pg.173]    [Pg.200]    [Pg.200]    [Pg.231]    [Pg.353]    [Pg.49]    [Pg.134]    [Pg.410]    [Pg.39]    [Pg.99]    [Pg.99]    [Pg.6]    [Pg.43]    [Pg.192]    [Pg.499]    [Pg.90]    [Pg.121]    [Pg.24]    [Pg.994]    [Pg.394]    [Pg.76]    [Pg.14]    [Pg.65]    [Pg.68]    [Pg.74]    [Pg.147]   
See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Alumina-supported cobalt catalysts, hydrogen

Carbon monoxide hydrogenation cobalt catalysts

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt catalysts hydrogen reduction, surface

Cobalt complex catalysts hydrogenation

Cobalt polysulfide hydrogenation catalyst

Cobalt sulfides, hydrogenation catalyst

Cobalt-based hydrogenation catalysts

Raney cobalt, hydrogenation catalyst

© 2024 chempedia.info