Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complexes kinetics

Another application of salen ligands is the hydrolytic kinetic resolution of epoxides (Scheme 3). For this purpose cobalt complexes are efficient, and fiu-... [Pg.155]

It is noteworthy that, as early as 1929, Shibata and Tsuchida reported a kinetic resolution of rac-3,4-dihydroxyphenylalanine by selective oxidation of one enantiomer using a chiral cobalt complex [Co(en)3NH3Cl]Br2 as a catalyst [46,47]. Figure 12 shows a highly enantioselective addition of diisopropy-Izinc to 2-(ferf-butylethynyl)pyrimidine-5-carbaldehyde via an autocatalytic process in the presence of a chiral octahedral cobalt complex with ethylenedi-... [Pg.284]

Intermolecular cyclopropanation of olefins poses two stereochemical problems enantioface selection and diastereoselection (trans-cis selection). In general, for stereochemical reasons, the formation of /ra ,v-cyclopropane is kinetically more favored than that of cis-cyclopropane, and the asymmetric cyclopropanation so far developed is mostly /ram-selective, except for a few examples. Copper, rhodium, ruthenium, and cobalt complexes have mainly been used as the catalysts for asymmetric intermolecular cyclopropanation. [Pg.243]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

Kinetic parameters for aquation at corresponding Cr(III) and Co(III) complexes have been compared for a series of complexes cis-[ML4XY]"+, where L4 = (NH3)4 or (en)2, X = Cl- or H20, and Y=an uncharged leaving group (DMSO, DMF, or DMAC). The uniformly negative activation volumes (AV between —2 and —11 cm3 mol-1) for the chromium complexes contrast with uniformly positive activation volumes (A V between +3 and +12 cm3 mol-1) for the cobalt complexes - AV values provide a more clear-cut contrast than AS values here (22). [Pg.82]

Carbonylative kinetic resolution of a racemic mixture of trans-2,3-epoxybutane was also investigated by using the enantiomerically pure cobalt complex [(J ,J )-salcy]Al(thf)2 [Co(CO)4] (4) [28]. The carbonylation of the substrate at 30 °C for 4h (49% conversion) gave the corresponding cis-/3-lactone in 44% enantiomeric excess, and the relative ratio (kre ) of the rate constants for the consumption of the two enantiomers was estimated to be 3.8, whereas at 0 °C, kte = 4.1 (Scheme 6). This successful kinetic resolution reaction supports the proposed mechanism where cationic chiral Lewis acid coordinates and activates an epoxide. [Pg.233]

Many cobalt(II) complexes are very reactive towards dissolved oxygen. The reasonably complex kinetic behavior of these systems can usually be interpreted in terms of a simple two step mechanism (8, 10) ... [Pg.420]

Enantiomer-differentiating co-polymerization of terminal epoxides is achieved by chiral chromium and cobalt complexes. Jacobsen etal. reported the co-polymerization of 1-hexene oxide with GO2 by using complex 35a. The reaction proceeds with kinetic resolution at 90% conversion, the unreacted epoxide is found to be enriched in the (i )-enantiomer of 90% ee. Detailed information about the resultant polymer, however, is not described. As discussed in the previous section, chiral cobalt-salen complex 34c co-polymerizes PO and GO2 (Table 3). When 34c with /r<3 / j--(li ,2i )-diaminocyclohexane backbone is applied to the co-polymerization, (A)-PO is consumed preferentially over (i )-enantiomer with a of 2.8 to give optically active PPG (Equation (8)). In a similar manner, a binary catalyst system, 34d/Bu4NGl, preferentially consumes (A)-PO over R)-PO with = 2.8-3.5. ... [Pg.619]

Rathke and Feder have employed Co2(CO)8 as the catalyst precursor in their studies. Samples withdrawn from reactions under pressure were analyzed for both total cobalt and for HCo(CO)4 (35) conversion to HCo(CO)4 was observed to the extent of 50-90%, varying according to (14) with temperature and hydrogen pressure. Experiments with different levels of catalyst showed that the overall rate of CO reduction was first-order in the HCo(CO)4 concentration, as determined by titration of reaction samples. Thus, there is substantial evidence that the catalyst in this system (or more precisely, the species present in the transition state of the rate-determining catalytic step) is a mononuclear cobalt complex. The observed kinetic dependences [Eq. [Pg.342]

Electrochemical (24) and chemical (25, 26) techniques have been utilized to investigate the kinetics and the mechanisms of the addition of dioxygen to a metal center, and to follow its subsequent reduction to hydrogen peroxide when catalyzed by cobalt(III) complexes of macro-cyclic amine ligands. Such complexes have also been involved in the general investigation of dioxygen addition to cobalt complexes (27,28). [Pg.269]

We have not been able to unscramble the complex kinetics of p-xylene oxidation. Ravens studied the second stage of oxidation, that of p-toluic acid in acetic acid with cobalt and manganese acetates and sodium bromide (25), and established the rate equation... [Pg.398]

Chromium and cobalt are the metals most commonly used in dyestuffs for polyamide fibres and leather because of their kinetic inertness and the stability of their complexes towards acid. Since the advent of fibre-reactive dyestuffs, chromium and cobalt complexes have also found application as dyestuffs for cellulosic fibres, particularly as black shades of high light-fastness. Copper complexes are of more importance as dyes for cellulosic fibres and are unsuitable for polyamide fibres because of their rather low stability towards acid treatments. [Pg.41]

Disubstituted-l,2,4-thiadiphospholes can be prepared by the reaction of thiophosphinato manganese or cobalt complexes with the kinetically stabilized phosphaalkynes <1996JOM(524)67, 1996CHEC-II(4)771>. In a specific example, 3,5-di(l-adamantyl)-l,2,4-thiadiphosphole 127 was prepared by the reaction of the (7]2-thiophosphinito)manganese... [Pg.596]

A salen-cobalt complex has been appended to the PASSflow monolith system to form catalyst 42 and used for the dynamic kinetic resolution of epibromohydrin, 43. Because 43 undergoes rapid racemization under the conditions used, all the starting materials can theoretically be converted to the desired diol 44 (Scheme 4.75). The... [Pg.107]

Dreos R, Siega P (2006) Kinetics and mechanism of metallacyclization in a chloromethyl-cobalt complex with a salen-type ligand. Organomet 25 5180-5183... [Pg.148]


See other pages where Cobalt complexes kinetics is mentioned: [Pg.43]    [Pg.1053]    [Pg.285]    [Pg.353]    [Pg.422]    [Pg.158]    [Pg.94]    [Pg.527]    [Pg.728]    [Pg.162]    [Pg.11]    [Pg.35]    [Pg.276]    [Pg.39]    [Pg.403]    [Pg.10]    [Pg.113]    [Pg.342]    [Pg.544]    [Pg.550]    [Pg.153]    [Pg.369]    [Pg.375]    [Pg.469]    [Pg.596]    [Pg.940]    [Pg.250]    [Pg.276]    [Pg.194]    [Pg.119]    [Pg.416]   
See also in sourсe #XX -- [ Pg.354 ]

See also in sourсe #XX -- [ Pg.405 , Pg.406 , Pg.407 , Pg.408 , Pg.409 , Pg.410 , Pg.411 , Pg.412 , Pg.413 , Pg.414 ]




SEARCH



Cobalt complexes kinetic effects

Cobalt complexes—continued kinetics

Complexation kinetics

Kinetic complexity

Kinetics complexes

© 2024 chempedia.info