Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coagulation surfactant

Dispersion Resins. Polytetrafluoroethylene dispersions in aqueous medium contain 30—60 wt % polymer particles and some surfactant. The type of surfactant and the particle characteristics depend on the appHcation. These dispersions are appHed to various substrates by spraying, flow coating, dipping, coagulating, or electro depositing. [Pg.354]

The debate as to which mechanism controls particle nucleation continues. There is strong evidence the HUFT and coagulation theories hold tme for the more water-soluble monomers. What remains at issue are the relative rates of micellar entry, homogeneous particle nucleation, and coagulative nucleation when surfactant is present at concentrations above its CMC. It is reasonable to assume each mechanism plays a role, depending on the nature and conditions of the polymerization (26). [Pg.24]

Microscopic sheets of amorphous silica have been prepared in the laboratory by either (/) hydrolysis of gaseous SiCl or SiF to form monosilicic acid [10193-36-9] (orthosihcic acid), Si(OH)4, with simultaneous polymerisation in water of the monosilicic acid that is formed (7) (2) freesing of colloidal silica or polysilicic acid (8—10) (J) hydrolysis of HSiCl in ether, followed by solvent evaporation (11) or (4) coagulation of silica in the presence of cationic surfactants (12). Amorphous silica fibers are prepared by drying thin films of sols or oxidising silicon monoxide (13). Hydrated amorphous silica differs in solubility from anhydrous or surface-hydrated amorphous sdica forms (1) in that the former is generally stable up to 60°C, and water is not lost by evaporation at room temperature. Hydrated sdica gel can be prepared by reaction of hydrated sodium siUcate crystals and anhydrous acid, followed by polymerisation of the monosilicic acid that is formed into a dense state (14). This process can result in a water content of approximately one molecule of H2O for each sdanol group present. [Pg.486]

Emulsified oil contains a Hquid film so that it will not separate by gravity without first breaking the emulsion. This is achieved by adding surfactants, emulsion breaking polymers or coagulants. After the emulsion is broken, the conventional technologies described above are appHcable. [Pg.182]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

Prindle and Ray (ZB.) have recently analyzed the same styrene data using a hybrid model consisting of the micellar nucleation mechanism above the CMC and of the homogeneous nucleation and coagulation mechanism below the CMC. Their simulations show a much steeper rise in the particle number concentration precisely at the CMC than predicted by EPM. Their hybrid model does not appear to predict that the particle concentration levels off at high surfactant concentrations. [Pg.375]

As an even more explicit example of this effect Figure 6 shows that EPM is able to reproduce fairly well the experimentally observed dependence of the particle number on surfactant concentration for a different monomer, namely methyl methacrylate (MMA). The polymerization was carried at 80°C at a fixed concentration of ammonium persulfate initiator (0.00635 mol dm 3). Because methyl methacrylate is much more water soluble than styrene, the drop off in particle number is not as steep around the critical micelle concentration (22.) In this instance the experimental data do show a leveling off of the particle number at high and low surfactant concentrations as expected from the theory of particle formation by coagulative nucleation of precursor particles formed by homogeneous nucleation, which has been incorporated into EPM. [Pg.375]

Defoaming Theory and Industrial Applications, edited by P. R. Garrett Mixed Surfactant Systems, edited by Keizo Ogino and Masahiko Abe Coagulation and Flocculation Theory and Applications, edited by Bohusiav DobiaD Biosurfactants Production Properties Applications, edited by Naim Kosaric Wettability, edited by John C. Berg... [Pg.5]

Dunlop A process for making foam rubber which uses sodium fluorosilicate to coagulate the rubber particles and deactivate the surfactants. See also Talalay. [Pg.93]

Polychlorotrifluoroethylene (PCTFE) is ordinarily prepared by emulsion polymerization. A polymer suitable for thermal processing requires coagulation, extensive washing, and postpolymerization workup. Coagulation to provide a filterable and washable solid is a slow, difficult process and removal of surfactant is an important part of it. Complete removal may be extremely difficult depending on the extent of adsorption to the polymer particles. Consequently we set out to develop a suspension polymerization process, which would be surfactant-free and afford an easily isolated product requiring a minimum of postreaction workup. [Pg.81]

Greater durability of the colloidal Pd/C catalysts was also observed in this case. The catalytic activity was found to have declined much less than a conventionally manufactured Pd/C catalyst after recycling both catalysts 25 times under similar conditions. Obviously, the lipophilic (Oct)4NCl surfactant layer prevents the colloid particles from coagulating and being poisoned in the alkaline aqueous reaction medium. Shape-selective hydrocarbon oxidation catalysts have been described, where active Pt colloid particles are present exclusively in the pores of ultramicroscopic tungsten heteropoly compounds [162], Phosphine-free Suzuki and Heck reactions involving iodo-, bromo-or activated chloroatoms were performed catalytically with ammonium salt- or poly(vinylpyrroli-done)-stabilized palladium or palladium nickel colloids (Equation 3.9) [162, 163],... [Pg.81]

As mentioned previously in Section 7.2.4, the coagulation/flocculation process was found to be affected by the presence of surfactants in the raw water or wastewater. Such interference was observed for both alum and ferric sulfate coagulant, but the use of certain organic polymer... [Pg.347]


See other pages where Coagulation surfactant is mentioned: [Pg.15]    [Pg.15]    [Pg.386]    [Pg.27]    [Pg.259]    [Pg.259]    [Pg.490]    [Pg.490]    [Pg.54]    [Pg.87]    [Pg.1441]    [Pg.252]    [Pg.612]    [Pg.363]    [Pg.366]    [Pg.374]    [Pg.656]    [Pg.294]    [Pg.356]    [Pg.143]    [Pg.17]    [Pg.252]    [Pg.252]    [Pg.39]    [Pg.157]    [Pg.119]    [Pg.18]    [Pg.58]    [Pg.662]    [Pg.379]    [Pg.57]    [Pg.206]    [Pg.212]    [Pg.94]    [Pg.323]    [Pg.323]    [Pg.368]    [Pg.311]    [Pg.347]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Cationic surfactant, coagulation

Coagulation contacts surfactant adsorption

Coagulation or Flocculation of Dispersed Solids by Surfactants

Polymeric surfactants critical coagulation concentration

© 2024 chempedia.info