Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge transfer chromophores

The deep violet color of pentaphenylbismuth and certain other pentaarylbismuth compounds has been the subject of considerable speculation. It has been shown by x-ray diffraction (173) that the bismuth atom in pentaphenylbismuth is square—pyramidal. WeU-formed crystals are dichromic, appearing violet when viewed in one plane but colorless in another plane. The nature of the chromophore has been suggested to be a charge-transfer transition by excitation of the four long equatorial bonds ... [Pg.134]

In 159 and 163-166 the tertiary amine function is coordinated to the boron atom and transmits the electronic change due to the ester formation to the chromophore. In 160-162 the boron atom is directly connected to the chromophore. After the complexation of the saccharide, the change of the charge transfer, e.g., for 159 [249-251], or the fluorescence bands, e.g., for 160-166 [252-255], can be measured and interpreted. The most selective binding of n-glucose has been achieved with host 164 that forms a 1 1 complex with a macrocyclic structure (Scheme 1). [Pg.45]

Table 1. Dipole moments, charge transfers, and molecular hyperpolarizabiUties for azobenzene chromophores, calculated using CNDO/S method ... Table 1. Dipole moments, charge transfers, and molecular hyperpolarizabiUties for azobenzene chromophores, calculated using CNDO/S method ...
G2, to G3, and to G4, the effective enhancement was 10%, 36%, and 35% larger than the value estimated by the simple addition of monomeric values. The enhancement included the local field effect due to the screening electric field generated by neighboring molecules. Assuming the chromophore-solvent effect on the second-order susceptibility is independent of the number of chro-mophore units in the dendrimers, p enhancement can be attributed to the inter-molecular dipole-dipole interaction of the chromophore units. Hence, such an intermolecular coupling for the p enhancement should be more effective with the dendrimers composed of the NLO chromophore, whose dipole moment and the charge transfer are unidirectional parallel to the molecular axis. [Pg.221]

Porter has termed these transitions charge-transfer excitations (CT). Possible one-electron contributions to the excitation of a molecule represented as DRA (D, donor R, chromophore A, acceptor) are... [Pg.315]

Sutherland RL, Brant MC, Heinrichs J, Rogers JE, Slagle JE, McLean DG, Fleitz PA (2005) Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores. J Opt... [Pg.145]

The chromophoric groups can bear one or more dissociable protons or can be nonionic. In the former, the ion exchange between the proton and appropriate metal cations causes the color change, while in the latter the coordination of the metal ion to the chromophoric donor or acceptor of the dye molecule induces a change of the charge transfer band of the dye. [Pg.92]

Related to these dimetallic systems, though not involving transition metals, are the boratastilbene complexes such as a " [ H 5 C 5 B-CH =CH-CH 4 -C H =C H P h ]" (isoelectronic with distyrylbenzene chromophores) that show aggregation-dependent photophysics. In nonpolar solvents, they form tightly bound ion pairs that are poorly luminescent, but in polar solvents, or when the counter ions are encapsulated in crown ethers, strong emission is observed as a result of intramolecular charge transfer.130... [Pg.37]

In heterogeneous photoredox systems also a surface complex may act as the chromophore. This means that in this case not a bimolecular but a unimolecular photoredox reaction takes place, since electron transfer occurs within the lightabsorbing species, i.e. through a ligand-to-metal charge-transfer transition within the surface complex. This has been suggested for instance for the photochemical reductive dissolution of iron(III)(hydr)oxides (Waite and Morel, 1984 Siffert and Sulzberger, 1991). For continuous irradiation the quantum yield is then ... [Pg.350]

The optical properties of organic dyes (Fig. ld-f, Table 1) are controlled by the nature of the electronic transition(s) involved [4], The emission occurs either from an electronic state delocalized over the whole chromophore (the corresponding fluorophores are termed here as resonant or mesomeric dyes) or from a charge transfer (CT) state formed via intramolecular charge transfer (ICT) from the initially excited electronic state (the corresponding fluorophores are referred to as CT dyes) [4], Bioanalytically relevant fluorophores like fluoresceins, rhodamines, most 4,4 -difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY dyes), and cyanines (symmetric... [Pg.12]

Liu B, Gaylord BS, Wang S, Bazan GC (2003) Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J Am Chem Soc 125 6705-6714... [Pg.448]

A theoretical formalism is available for understanding optical charge transfer processes in a variety of chemical systems (mixed-valence ions, donor-acceptor complexes, metal-ligand charge transfer chromophores, etc) where the extent of charge transfer is large and where electronic coupling between the electron donor and acceptor sites is relatively small. [Pg.140]


See other pages where Charge transfer chromophores is mentioned: [Pg.13]    [Pg.183]    [Pg.13]    [Pg.183]    [Pg.208]    [Pg.246]    [Pg.142]    [Pg.163]    [Pg.251]    [Pg.78]    [Pg.129]    [Pg.225]    [Pg.251]    [Pg.357]    [Pg.642]    [Pg.582]    [Pg.583]    [Pg.915]    [Pg.473]    [Pg.79]    [Pg.8]    [Pg.14]    [Pg.16]    [Pg.24]    [Pg.36]    [Pg.460]    [Pg.264]    [Pg.108]    [Pg.195]    [Pg.220]    [Pg.356]    [Pg.357]    [Pg.360]    [Pg.46]    [Pg.286]    [Pg.291]    [Pg.693]    [Pg.130]    [Pg.133]   
See also in sourсe #XX -- [ Pg.422 ]




SEARCH



Chromophores transfer

Intramolecular charge transfer chromophores

© 2024 chempedia.info