Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium trioxide sulfoxides

Vicinal glycols may be oxidized to the corresponding 17a-hydroxy-20-ketones in reasonable yields by means of chromium trioxide in dimethylfor-mamide in the presence of manganese dichloride, or by treatment with dimethyl sulfoxide-acetic anhydride. ... [Pg.184]

The conversion of cyclic sulfides to sulfones is accompbshed by more energetic oxidations. Perhalogenated thiolanes [106] and 1,3-dithietanes [107] are oxidized to sulfones and disulfones, respectively, by a mixture of chromium trioxide and nitric acid (equation 98) The same reagent converts 2,4-dichloro-2,4-bis(tnfluoromethyl)-l,3-dif/u cto cs to disulfone derivatives [107], whereas trifluoromethaneperoxysulfonic acid converts the starting compound to a sul-fone-sulfoxide derivative [2(equation 99). [Pg.355]

Other hazardous reactions may occur with carbon (e.g., soot, graphite, activated charcoal), dimethyl sulfoxide, ethylene oxide, chlorine, bromine vapor, hydrogen bromide, potassium iodide + magnesium bromide, chloride or iodide, maleic anhydride, mercury, copper(II) oxide, mercury(II) oxide, tin(IV) oxide, molybdenum(III) oxide, bismuth trioxide, phosphoms trichloride, sulfur dioxide, chromium trioxide. [Pg.1153]

In contrast, the chemistry of the oxidation of a primary alcohol to an aldehyde differs sharply from the oxidation of an aldehyde to a carboxylic acid (case (b)). Advantage, in this case, must be taken of the difference in the mechanisms of these steps. Among the reagents which can effectively oxidize alcohols and remain rather inert toward aldehydes are pyridinium chlorochro-mate (a chromium trioxide-hydrogen chloride complex of pyridine) or dimethyl sulfoxide-Lewis acid. [Pg.122]

The most important applications of peroxyacetic acid are the epoxi-dation [250, 251, 252, 254, 257, 258] and anti hydroxylation of double bonds [241, 252, the Dakin reaction of aldehydes [259, the Baeyer-Villiger reaction of ketones [148, 254, 258, 260, 261, 262] the oxidation of primary amines to nitroso [iJi] or nitrocompounds [253], of tertiary amines to amine oxides [i58, 263], of sulfides to sulfoxides and sulfones [264, 265], and of iodo compounds to iodoso or iodoxy compounds [266, 267] the degradation of alkynes [268] and diketones [269, 270, 271] to carboxylic acids and the oxidative opening of aromatic rings to aromatic dicarboxylic acids [256, 272, 271, 272,273, 274]. Occasionally, peroxyacetic acid is used for the dehydrogenation [275] and oxidation of aromatic compounds to quinones [249], of alcohols to ketones [276], of aldehyde acetals to carboxylic acids [277], and of lactams to imides [225,255]. The last two reactions are carried out in the presence of manganese salts. The oxidation of alcohols to ketones is catalyzed by chromium trioxide, and the role of peroxyacetic acid is to reoxidize the trivalent chromium [276]. [Pg.12]

The main applications of oxidation with chromium trioxide are transformations of primary alcohols into aldehydes [184, 537, 538, 543, 570, 571, 572, 573] or, rarely, into carboxylic acids [184, 574], and of secondary alcohols into ketones [406, 536, 542, 543, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584]. Jones reagent is especially successful for such oxidations. It is prepared by diluting with water a solution of 267 g of chromium trioxide in a mixture of 230 mL of concentrated sulfuric acid and 400 mL of water to 1 L to form an 8 N CrOj solution [565, 572, 579, 581, 585, 556]. Other oxidations with chromic oxide include the cleavage of carbon-carbon bonds to give carbonyl compounds or carboxylic acids [482, 566, 567, 569, 580, 587, 555], the conversion of sulfides into sulfoxides [541] and sulfones [559], and the transformation of alkyl silyl ethers into ketones or carboxylic acids [590]. [Pg.22]

Pyridinium dichromate, prepared from chromium trioxide in a minimum amount of water and pyridine, forms a bright-orange solid and is soluble in water, dimethylformamide, dimethyl sulfoxide, and dimethyl-acetamide sparingly soluble in dichloromethane, chloroform, and acetone and almost insoluble in hexane, toluene, ether, and ethyl acetate. Allylic secondary alcohols are oxidized more rapidly than their saturated analogues. Oxidations are carried out in dichloromethane solutions at 25 °C, and ketones are obtained in high yields (equation 251) [603. ... [Pg.137]

The oxidation of diols having alcoholic groups of the same nature, for example, both alcoholic groups are primary, secondary, allylic, or benzylic, is usually carried out at both groups to yield dialdehydes [832] or diketones [552], Such reactions are achieved by chromium trioxide [582], barium manganate [832], dimethyl sulfoxide activated with acetic anhydride [1013], and others (equations 284 and 285). [Pg.155]

Various complex and low yield procedures for the preparation of acetylallene have been described oxidation of homopropargytic alcohol with chromium trioxide in sulfuric acid,11 mild acid hydrolysis of conjugated ethoxyenyne,12 reaction of propargyltrimethylsilane with acyl halide,13 flash vacuum thermolysis of 0-keto trimathylsilyl enol ether14 and cydoelimination of p-silylethyl sulfoxide.15... [Pg.215]

Copper(II) sulfate Cumene hydroperoxide Cyanides Cyclohexanol Cyclohexanone Decaborane-14 Diazomethane 1,1-Dichloroethylene Dimethylformamide Hydroxylamine, magnesium Acids (inorganic or organic) Acids, water or steam, fluorine, magnesium, nitric acid and nitrates, nitrites Oxidants Hydrogen peroxide, nitric acid Dimethyl sulfoxide, ethers, halocarbons Alkali metals, calcium sulfate Air, chlorotrifluoroethylene, ozone, perchloryl fluoride Halocarbons, inorganic and organic nitrates, bromine, chromium(VI) oxide, aluminum trimethyl, phosphorus trioxide... [Pg.1477]

The above discussion has concentrated upon the reagents used, but it is equally of value to comment on the substrate, particularly in reactions for which other oxidation methods have been reported to fail. A good example is the oxidation of the iron-carbonyl complex (31) to the ketone (32 equation 14). The use of dimethyl sulfoxide activated with sulfur trioxide-pyridine complex gave a 70% yield of the product, in contrast to the use of the Pfitzner-Moffatt procedure (dimethyl sulfoxide-DCC) or the chromium... [Pg.299]


See other pages where Chromium trioxide sulfoxides is mentioned: [Pg.149]    [Pg.150]    [Pg.230]    [Pg.444]    [Pg.444]    [Pg.68]    [Pg.149]    [Pg.72]    [Pg.768]    [Pg.104]    [Pg.463]    [Pg.1431]    [Pg.101]    [Pg.207]    [Pg.149]    [Pg.104]    [Pg.262]    [Pg.70]    [Pg.196]    [Pg.768]    [Pg.296]    [Pg.17]    [Pg.281]    [Pg.582]    [Pg.980]    [Pg.981]    [Pg.985]   
See also in sourсe #XX -- [ Pg.768 ]

See also in sourсe #XX -- [ Pg.768 ]

See also in sourсe #XX -- [ Pg.7 , Pg.768 ]

See also in sourсe #XX -- [ Pg.7 , Pg.768 ]

See also in sourсe #XX -- [ Pg.768 ]




SEARCH



Chromium trioxide

© 2024 chempedia.info