Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium trioxide, reaction with aldehydes

Grignard reaction with formaldehyde closer to our desired product. Subsequent hydrolysis will yield 2,2-dimethylbutanol our desired product is 2,2-dimethylbutanal. Oxidation of the primary alcohol to the aldehyde can be accomplished with Sarett s reagent, a combination of chromium trioxide (CrOs) with pyridine. [Pg.557]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

If homolytic reaction conditions (heat and nonpolar solvents) can be avoided and if the reaction is conducted in the presence of a weak base, lead tetraacetate is an efficient oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. The yield of product is in many cases better than that obtained by oxidation with chromium trioxide. The reaction in pyridine is moderately slow the intial red pyridine complex turns to a yellow solution as the reaction progresses, the color change thus serving as an indicator. The method is surprisingly mild and free of side reactions. Thus 17a-ethinyl-17jS-hydroxy steroids are not attacked and 5a-hydroxy-3-ket-ones are not dehydrated. [Pg.242]

The intermediacy of dipolar species such as 186 has been demonstrated by reaction of enamines with 2-hydroxy-1-aldehydes of the aromatic series (129). The enamine (113) reacts in benzene solution at room temperature with 2-hydroxy-1-naphthaldehyde to give the crystalline adduct (188) in 91 % yield. Oxidation with chromium trioxide-pyridine of 188 gave 189 with p elimination of the morpholine moiety. Palladium on charcoal dehydrogenation of 189 gave the known 1,2-benzoxanthone (129). [Pg.157]

The mixture of chromium trioxide with one equivalent of trimethylsilyl chloride, with no solvent added, results in the formation of an explosive red liquid that is soluble in dichloromethane or tetrachloromethane.428 It is suggested, with no spectroscopic evidence, that it consists of trimethylsilyl chlorochromate [Me3Si-0-Cr(0)2-Cl]. This compound, which can safely be used in organic solvents, is able to oxidize alcohols to aldehydes or ketones, and interacts with r-butyldimethylsilyl ethers producing deprotection, followed by oxidation of the liberated alcohol.138 Compounds analogue to trimethylsilyl chlorochromate are also able to oxidize alcohols, although they possess lesser reactivity. They can be prepared by reaction of chromium trioxide with dimethyldichlorosilane and diphenyldichlorosilane.428b... [Pg.91]

The oxidation of primary alcohols to aldehydes also suffers from the problem of overoxidation of the aldehyde to a carboxylic acid. Mild methods capable of stopping die oxidation at the aldehyde oxidation level are required if aldehydes are to be obtained. The most common and effective reagent for this purpose is pyridinium chlorochromate (PCC), produced by the reaction of pyridinium hydrochloride with chromium trioxide. This reagent is soluble in dichloromethane and smoothly oxidizes primary alcohols to aldehydes in high yields. Because of die mild, neutral reaction conditions and the use of stoichiomettic amounts of oxidant, the aldehyde product is not oxidized further. [Pg.193]

Reaction of the C-0 and O-H Bonds Primary alcohols oxidize to carboxylic acids secondary alcohols oxidize to ketones with chromium trioxide or sodium dichromate. Tertiary alcohols do not oxidize under mild conditions. With pyridinium chlorochromate (PCC) the oxidation of primary alcohols can be stopped at aldehydes. [Pg.210]

Oxidation of an aldehyde group to a carboxyl group has often been used for identification of the compounds. As far as can be judged from the results, such oxidations, using chromium trioxide/acetic acid, bromine-water, - peroxy acids, - or chlorite, have not been accompanied by any important side-reactions. Hypoiodite titration, using the iodine in sodium bicarbonate-sodium carbonate procedure, has sometimes been used, giving almost stoichiometric aldehyde determinations. - - Reduction by the Meerwein-Ponndorf reaction, with borohydride - - ... [Pg.246]

In contrast to the usual reaction of aromatic aldehydes with cyclic ketones o-nitrobenzaldehyde condenses with 17-ketones to produce good yields of seco-acids, a reaction which has been applied to the preparation of 16-oxa-steroids. Thus, 3 -hydroxy-5a-androstan-17-one or its acetate affords the seco-steroid (153), which can be oxidised either as the free acid by ozone and alkaline hydrogen peroxide to the diacid (155) or, as its methyl ester (154), with chromium trioxide to the monomethyl ester (156). Diborane reduction of the diacid (155) or lithium aluminium hydride reduction of the dimethyl ester (157) gave the trans-diol (158), cyclised with toluene-p-sulphonic acid to 16-oxa-androstan-3)5-ol (159) or, by oxidation with Jones reagent to the lactone (152) (as 3-ketone) in quantitative yield. This lactone could also be obtained by lithium borohydride reduction of the monomethyl ester (156), whilst diborane reduction of (156) and cyclisation of the resulting (151) afforded the isomeric lactone (150). The diacid (155) reacted with acetic anhydride to afford exclusively the cis-anhydride (161) which was reduced directly with lithium aluminium hydride to the cis-lactone (160) or, as its derived dimethyl ester (162) to the cis-diol (163) which cyclised to 16-oxa-14)5-androstan-3) -ol (164). [Pg.428]


See other pages where Chromium trioxide, reaction with aldehydes is mentioned: [Pg.1291]    [Pg.1291]    [Pg.67]    [Pg.230]    [Pg.1065]    [Pg.4]    [Pg.61]    [Pg.18]    [Pg.124]    [Pg.226]    [Pg.95]    [Pg.753]    [Pg.222]    [Pg.294]    [Pg.87]    [Pg.61]    [Pg.97]    [Pg.25]    [Pg.144]    [Pg.116]    [Pg.6]    [Pg.222]    [Pg.222]    [Pg.258]    [Pg.491]    [Pg.382]    [Pg.272]    [Pg.294]    [Pg.36]    [Pg.222]    [Pg.38]    [Pg.71]    [Pg.100]    [Pg.102]    [Pg.111]    [Pg.210]    [Pg.453]    [Pg.539]   
See also in sourсe #XX -- [ Pg.701 ]

See also in sourсe #XX -- [ Pg.701 ]

See also in sourсe #XX -- [ Pg.727 ]




SEARCH



Chromium reaction with

Chromium reactions

Chromium trioxide

Chromium trioxide, reaction with

Reactions trioxide

© 2024 chempedia.info