Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chorismate to prephenate

In this contribution, we describe work from our group in the development and application of alternatives that allow the explicit inclusion of environment effects while treating the most relevant part of the system with full quantum mechanics. The first methodology, dubbed MD/QM, was used for the study of the electronic spectrum of prephenate dianion in solution [18] and later coupled to the Effective Fragment Potential (EFP) [19] to the study of the Claisen rearrangement reaction from chorismate to prephenate catalyzed by the chorismate mutase (CM) enzyme [20]. [Pg.3]

The Shikimate pathway is responsible for biosynthesis of aromatic amino acids in bacteria, fungi and plants [28], and the absence of this pathway in mammals makes it an interesting target for designing novel antibiotics, fungicides and herbicides. After the production of chorismate the pathway branches and, via specific internal pathways, the chorismate intermediate is converted to the three aromatic amino acids, in addition to a number of other aromatic compounds [29], The enzyme chorismate mutase (CM) is a key enzyme responsible for the Claisen rearrangement of chorismate to prephenate (Scheme 1-1), the first step in the branch that ultimately leads to production of tyrosine and phenylalanine. [Pg.4]

Figure 1-4. Energy profiles for the reaction of chorismate to prephenate. (a) Profile in vacuum for the forward (squares) and reverse (filled circles) reactions, (b) Profiles for forward reaction in water (filled circles), and in the enzyme with only the substrate in the QM zone (squares) and with substrate plus chorismate mutase side chains glu78 and arg90 in the QM zone (diamonds)... Figure 1-4. Energy profiles for the reaction of chorismate to prephenate. (a) Profile in vacuum for the forward (squares) and reverse (filled circles) reactions, (b) Profiles for forward reaction in water (filled circles), and in the enzyme with only the substrate in the QM zone (squares) and with substrate plus chorismate mutase side chains glu78 and arg90 in the QM zone (diamonds)...
Chorismate mutase catalyzes the Claisen rearrangement of chorismate to prephenate at a rate 106 times greater than that in solution (Fig. 5.5). This enzyme reaction has attracted the attention of computational (bio)chemists, because it is a rare example of an enzyme-catalyzed pericyclic reaction. Several research groups have studied the mechanism of this enzyme by use of QM/MM methods [76-78], It has also been studied with the effective fragment potential (EFP) method [79, 80]. In this method the chemically active part of an enzyme is treated by use of the ab initio QM method and the rest of the system (protein environment) by effective fragment potentials. These potentials account... [Pg.171]

The hydrophobic effects between the apolar gronps involved in the Diels-Alder reaction also occnr when the apolar gronps belong to the same molecules, and thus should also be beneficial to the Claisen rearrangement. The nonenzymatic rearrangement of chorismate to prephenate occurs 100 times faster in water than in methanol (Copley and Knowles, 1987 Grieco et al., 1989). [Pg.163]

FIGURE 22-19 Biosynthesis of phenylalanine and tyrosine from chorismate in bacteria and plants. Conversion of chorismate to prephenate is a rare biological example of a Claisen rearrangement. [Pg.851]

Figure 18.8 Claisen rearrangement from chorismate to prephenate catalyzed by antibodies. Figure 18.8 Claisen rearrangement from chorismate to prephenate catalyzed by antibodies.
The Claisen rearrangement has attracted special attention because of the pronounced solvent dependence of the reaction [92] and the biochemically important Claisen rearrangement of chorismate to prephenate in the shikimic add pathway [93] (Fig. 12). Both aspects of the reaction have been studied recently using DFT methods. [Pg.20]

The conversion of chorismate to prephenate, catalyzed by the enzyme choris-mate mutase, is involved in the biosynthesis of the amino acids phenylalanine and tyrosine. Classify this pericyclic reaction and explain whether it is thermally allowed or not. [Pg.1009]

Woodcock HL, M Hodoscek, P Sherwood, YS Lee, HF Schaefer, BR Brooks (2003) Exploring the quantum mechanical/molecular mechanical replica path method a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theor. Chem. Acc. 109 (3) 140-148... [Pg.300]

Hur S, TC Bruice (2003a) Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E-coli mutase The efficiency of the enzyme catalysis. J. Am. Chem. Soc. 125 (19) 5964-5972... [Pg.302]

Before we embark on our journey into the world of six-membered transition states, I would like to speak briefly about one reaction, to illustrate how a transition state is drawn throughout the book. The enzyme-catalyzed transformation of chorsimate (2) to prephenate (3) is a classic example of a [3,3]-sigmatropic Claisen rearrangement6 (Scheme IV). As an old bond is being broken and at the same time a new bond is formed in the transition state, the transition state for the Claisen rearrangement of chorismate to prephenate would look more like transistion state A than like B. Still, for the convenience of following the bond connection event clearly, I prefer to draw the transition state like B. [Pg.4]

The bacterial enzyme chorismate mutase-prephenate dehydrogenase is peculiar because it is a single protein unit with two catalytic activities. It catalyzes the sequential reactions of mutation of chorismate to prephenate and then the reaction that leads to the formation of phenylalanine and tyrosine, through oxidation of prephenate. The first of these reactions is interesting because it is one of the few strictly single-substrate enzymatic reactions it entails... [Pg.244]

The utilization of evolutionary strategies in the laboratory can be illustrated with proteins that catalyze simple metabolic reactions. One of the simplest such reactions is the conversion of chorismate to prephenate (Fig. 3.3), a [3,3]-sigmatropic rearrangement. This transformation is a key step in the shikimate pathway leading to aromatic amino acids in plants and lower organisms [28, 29]. It is accelerated more than a million-fold by enzymes called chorismate mutases [30],... [Pg.33]

Andrews, P. R. Smith, G. D. Yonng, I. G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate, Biochemistry 1973,12, 3492-3498. [Pg.594]

Hur, S. Bruice, T. C. lust a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants), J. Am. Chem. Soc. 2003,125, 10540-10542. [Pg.595]

Quantum mechanical calculations can be used to obtain estimates of molar entropies of species. An example is the study of the conversion of chorismate to prephenate by Kast and coworkers (11). They used quantum mechanics to estimate Ar5° for chorismate (aq) = prephenate (aq). Since Af//° was obtained experimentally, this made it possible to estimate the equilibrium constant for this reaction. [Pg.378]

Chorismate mutase catalyzes the conversion of chorismate to prephenate (Equation 17.44). This reaction is unusual, in that it is the only pericyclic [3,3] sigmatropic rearrangement (Claisen rearrangement) that is catalyzed by an enzyme. [Pg.753]

QM-MM simulations were used to generate trajectories for the steered molecular dynamics calculation of the free energy profile for the conversion of two molecules (chorismate to prephenate) involved in the biosynthesis of amino acids. The results showed good agreement with those obtained from umbrella sampling. Only fair agreement with experiment was attributed to the accuracy of the density function theory calculations. [Pg.199]

Chorismate mutase provides an example of an enzyme where QM/MM calculations have identified an important catalytic principle at work [8], This enzyme catalyses the Claisen rearrangement of chorismate to prephenate. The reaction within the enzyme is not believed to involve chemical catalysis, and this pericylic reaction also occurs readily in solution. Lyne et al. [8] investigated the reaction in chorismate mutase in QM/MM calculations, at the AMI QM level (AMI was found to perform acceptably well for this reaction in comparisons with ab initio results for the reaction in the gas phase [8]). Different sizes of QM system were tested in the QM/MM studies (e.g. including the substrate and no, or up to three, protein side chains), and similar results found in all cases. The reaction was modelled by minimization along an approximate reaction coordinate, defined as the ratio of the forming C-C and breaking C-0 bonds. Values of the reaction coordinate were taken from the AMI intrinsic reaction coordinate for the gas-phase reaction. [Pg.645]

Figure 1 In a QM/MM calculation, a small region is treated by a quantum mechanical (QM) electronic structure method, and the surroundings treated by simpler, empirical, molecular mechanics. In treating an enzyme-catalysed reaction, the QM region includes the reactive groups, with the bulk of the protein and solvent environment included by molecular mechanics. Here, the approximate transition state for the Claisen rearrangement of chorismate to prephenate (catalysed by the enzyme chorismate mutase) is shown. This was calculated at the RHF(6-31G(d)-CHARMM QM-MM level. The QM region here (the substrate only) is shown by thick tubes, with some important active site residues (treated by MM) also shown. The whole model was based on a 25 A sphere around the active site, and contained 4211 protein atoms, 24 atoms of the substrate and 947 water molecules (including 144 water molecules observed by X-ray crystallography), a total of 7076 atoms. The results showed specific transition state stabilization by the enzyme. Comparison with the same reaction in solution showed that transition state stabilization is important in catalysis by chorismate mutase78. Figure 1 In a QM/MM calculation, a small region is treated by a quantum mechanical (QM) electronic structure method, and the surroundings treated by simpler, empirical, molecular mechanics. In treating an enzyme-catalysed reaction, the QM region includes the reactive groups, with the bulk of the protein and solvent environment included by molecular mechanics. Here, the approximate transition state for the Claisen rearrangement of chorismate to prephenate (catalysed by the enzyme chorismate mutase) is shown. This was calculated at the RHF(6-31G(d)-CHARMM QM-MM level. The QM region here (the substrate only) is shown by thick tubes, with some important active site residues (treated by MM) also shown. The whole model was based on a 25 A sphere around the active site, and contained 4211 protein atoms, 24 atoms of the substrate and 947 water molecules (including 144 water molecules observed by X-ray crystallography), a total of 7076 atoms. The results showed specific transition state stabilization by the enzyme. Comparison with the same reaction in solution showed that transition state stabilization is important in catalysis by chorismate mutase78.
The Claisen rearrangement of chorismate to prephenate, catalyzed by chorismate mutase, is illustrated below. It... [Pg.152]

Figure 1. The isomerization of chorismate to prephenate via the chair-like transition state (upper pathway) or the boat-like transition state (lower pathway). The molecules are shown in the lowest energy conformations obtained from MIN DO/3 molecular orbital calculations (17). Oxygen atoms are shaded. Figure 1. The isomerization of chorismate to prephenate via the chair-like transition state (upper pathway) or the boat-like transition state (lower pathway). The molecules are shown in the lowest energy conformations obtained from MIN DO/3 molecular orbital calculations (17). Oxygen atoms are shaded.

See other pages where Chorismate to prephenate is mentioned: [Pg.415]    [Pg.4]    [Pg.10]    [Pg.13]    [Pg.58]    [Pg.496]    [Pg.496]    [Pg.82]    [Pg.241]    [Pg.20]    [Pg.20]    [Pg.21]    [Pg.23]    [Pg.36]    [Pg.56]    [Pg.595]    [Pg.70]    [Pg.381]    [Pg.855]    [Pg.753]    [Pg.496]    [Pg.19]    [Pg.50]    [Pg.154]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Chorismate

Prephenate

© 2024 chempedia.info