Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Choi-Schowalter emulsion model

Effects of addition of a compatibilizing block copolymer, poly(styrene-b-methyl methacrylate), P(S-b-MMA) on the rheological behavior of an immiscible blend of PS with SAN were studied by dynamic mechanical spectroscopy [Gleisner et al., 1994]. Upon addition of the compatibilizer, the average diameter of PS particles decreased from d = 400 to 120 nm. The data were analyzed using weighted relaxation-time spectra. A modified emulsion model, originally proposed by Choi and Schowalter [1975], made it possible to correlate the particle size and the interfacial tension coefficient with the compatibilizer concentration. It was reported that the particle size reduction and the reduction of occur at different block-copolymer concentrations. [Pg.517]

A number of other models and theories have been proposed for evaluating viscosity data. Two models that are referred to as emulsion models predict the complex modulus or viscosity of an immiscible blend with spherical inclusions of one phase in a continuous phase (Oldroyd [263] and Paherne [264] models). The emulsion models can predict a positive deviation as noted in Fig. 6.21. Application of the Palierne model showed good agreement for viscosity data for EVAc/PE blends [265,266]. Another emulsion model proposed by Choi and Schowalter [267] is based on a cell model composed of a viscous matrix with viscous dispersed spheres (droplets). The viscosity of these models in the limit of zero shear viscosity can be expressed by the following equations. [Pg.371]

Starting with cell model of creeping flow, Choi and Schowalter [113] derived a constitutive equation for an emulsion of deformable Newtonian drops in a Newtonian matrix. The authors characterized the interphase with an ill-defined interfacial tension coefficient, Vu, affecting the capillarity number, k = (Judfvu. The analysis indicated that depending on magnitude of /cy the emulsion may be elastic, characterized by two relaxation times. For the steady-state shearing, the authors expressed the relative viscosity of emulsions and the first normal stress difference as ... [Pg.40]

A linear viscoelastic constitutive model of dilute emulsion viscoelastic properties was proposed by Oldroyd [111, 112]. The model considered low deformation of monodispersed drops of one Newtonian liquid in another, with an interphase. Choi and Schowalter [113] extended their cell model to dilute emulsions with Newtonian matrix and viscoelastic drops under infinitesimally small oscillatory deformation. Oldroyd s model was modified by Palierne [126, 127] for dilute viscoelastic hquids emulsions with polydispersed spherical drops (thus, subject to small deformations) with constant interfacial tension coefficient, Vu, at concentrations below that where the drop-drop interactions start complicating the flow field, that is, < 0.1 ... [Pg.43]

While the Choi and Schowalter [113] theory is fundamental in understanding the rheological behavior of Newtonian emulsions under steady-state flow, the Palierne equation [126], Eq. (2.23), and its numerous modifleations is the preferred model for the dynamic behavior of viscoelastic liquids under small oscillatory deformation. Thus, the linear viscoelastic behavior of such blends as PS with PMMA, PDMS with PEG, and PS with PEMA (poly(ethyl methacrylate))at <0.15 followed Palierne s equation [129]. From the single model parameter, R = R/vu, the extracted interfacial tension coefficient was in good agreement with the value measured directly. However, the theory (developed for dilute emulsions) fails at concentrations above the percolation limit, 0 > (p rc 0.19 0.09. [Pg.63]


See other pages where Choi-Schowalter emulsion model is mentioned: [Pg.777]    [Pg.841]    [Pg.371]    [Pg.256]    [Pg.27]   
See also in sourсe #XX -- [ Pg.414 , Pg.437 ]




SEARCH



Emulsions models

© 2024 chempedia.info