Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality in organic chemistry

Enantiomers are molecules that are chiral. In organic chemistry, if a carbon atom is bonded to four different atoms (or groups of elements), then we can draw two enantiomers of the molecule. Remember that the connectivity does not change, just the arrangement of the atoms in space. [Pg.69]

CHIRALITY IN ORGANIC CHEMISTRY We learn that compounds with nonsuperimposable mirror images are chiral and that chirality plays important roles in organic and biological chemistry. [Pg.1041]

In organic chemistry chirality most often occurs m molecules that contain a car bon that is attached to four different groups An example is bromochlorofluoromethane (BrClFCH)... [Pg.282]

In organic chemistry there are many important molecules that contain two or more groups each of which, in isolation, would be chiral. A simple example is that of 2,3-difluorobutane, shown in Figure 4.9. The molecule can be regarded as a substituted ethane and we assume that, as in ethane itself, the stable sttucture is one in which one CFIFCFI3 group is staggered relative to the other. [Pg.80]

The strategy described here explains the different possibilities of enzymatic ammonolysis and aminolysis reaction for resolution of esters or preparation of enantiomerically pure amides, which are important synthons in organic chemistry. This methodology has been also applied for the synthesis of pyrrolidinol derivatives that can be prepared via enzymatic ammonolysis of a polyfunctional ester, such as ethyl ( )-4-chloro-3-hydroxybutanoate [30]. In addition, it is possible in the resolution of chiral axe instead of a stereogenic carbon atom. An interesting enzymatic aminolysis of this class of reaction has been recently reported by Aoyagi et al. [31[. The side chain of binaphthyl moiety plays an important role in the enantiodis-crimination of the process (Scheme 7.14). [Pg.179]

Metal-assisted enantioselective catalytic reactions are one of the most important areas in organic chemistry [1-3]. They require the appropriate design and the preparation of chiral transition metal complexes, a field also of major importance in modern synthetic chemistry. These complexes are selected on both their ability to catalyze a given reaction and their potential as asymmetric inducers. To fulfill the first function, it is absolutely required that the catalysts display accessible metal coordination sites where reactants can bind since activation would result from a direct interaction between the metal ion... [Pg.271]

As in organic chemistry, there are several sources of chirality at a metal center. As for an asymmetric carbon atom in an organic molecule, the coordination of the metal ion by four different monodentate hgands in a tetrahedral con-... [Pg.272]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]

In this work a new approach is desribed, which can help to understand ED over heterogeneous catalysts We also hope that this approach can be used to find new modifiers for enantioselective heterogeneous catalytic reactions. The basis for this approach is the steric shielding known in organic chemistry [7,8]. A chiral template molecule can induce shielding effect (SE) in such a way that it preferentially interacts with one of the prochiral sites of the substrate. If a substrate is preferentially shielded its further reaction can take place only fi"om its unshielded site resulting in ED. [Pg.241]

Hydride reductions of C = N groups are well known in organic chemistry. It was therefore obvious to try to use chiral auxiliaries in order to render the reducing agent enantioselective [88]. The chiral catalyst is prepared by addition of a chiral diol or amino alcohol, and the active species is formed by reaction of OH or NH groups of the chiral auxiliary with the metal hydride. A major drawback of most hydride reduction methods is the fact that stoichiometric or higher amounts of chiral material are needed and that the hydrolyzed borates and aluminates must be disposed of, which leads to increased costs for the reduction step. [Pg.1209]

The asymmetric synthesis of allenes by stereoselective manipulations of enantio-merically pure or enriched substrates relies on the availability of such optically active substrates. In contrast, a direct synthesis of allenes by the reaction of prochiral substrates in the presence of an external asymmetric catalyst is an almost ideal process [102]. Most of the catalytic asymmetric syntheses in organic chemistry involve the creation of chiral tetrahedral carbon centers [103], whereas the asymmetric synthesis of allenes requires the construction of an axis of chirality. [Pg.172]

Carbon-carbon bond-forming reactions are one of the most basic, but important, transformations in organic chemistry. In addition to conventional organic reactions, the use of transition metal-catalyzed reactions to construct new carbon-carbon bonds has also been a topic of great interest. Such transformations to create chiral molecules enantioselectively is therefore very valuable. While various carbon-carbon bond-forming asymmetric catalyses have been described in the literature, this chapter focuses mainly on the asymmetric 1,4-addition reactions under copper or rhodium catalysis and on the asymmetric cross-coupling reactions catalyzed by nickel or palladium complexes. [Pg.59]

Until now I have discussed the methods of synthesis of optically active polymers from chiral monomers. As is well known in organic chemistry, it is also possible to produce chiral molecules with one preferred configuration by reaction of achiral molecules in the presence of some chiral influence. These reactions are known as asymmetric syntheses (36, 323-325) when an unsatuiated compound is involved, the term enantioface-differenriating reaction is often used (281). [Pg.78]

In this review, we focus mainly on the preparative utility of organic peroxides, and only few mechanistic investigations are discussed. This review covers synthetic methodologies for the preparation of alkyl hydroperoxides and dialkyl peroxides (Section II) and the synthetic use of these peroxides in organic chemistry (Section III). In Section II, general methods for the synthesis of organic hydroperoxides and dialkyl peroxides are discussed, as well as the preparation of enantiomerically pure chiral hydroperoxides. The latter have attracted considerable interest for asymmetric oxidation reactions during the last years. [Pg.309]


See other pages where Chirality in organic chemistry is mentioned: [Pg.653]    [Pg.1028]    [Pg.1067]    [Pg.1067]    [Pg.1082]    [Pg.983]    [Pg.1009]    [Pg.653]    [Pg.1028]    [Pg.1067]    [Pg.1067]    [Pg.1082]    [Pg.983]    [Pg.1009]    [Pg.159]    [Pg.151]    [Pg.195]    [Pg.210]    [Pg.211]    [Pg.316]    [Pg.317]    [Pg.199]    [Pg.283]    [Pg.335]    [Pg.208]    [Pg.53]    [Pg.326]    [Pg.632]    [Pg.46]    [Pg.277]    [Pg.274]    [Pg.124]    [Pg.196]    [Pg.421]    [Pg.439]    [Pg.499]    [Pg.33]    [Pg.48]    [Pg.48]    [Pg.309]   
See also in sourсe #XX -- [ Pg.1067 ]




SEARCH



Chiral chemistry

Chiral organic chemistry

Chirality in chemistry

Organic chemistry chirality

© 2024 chempedia.info