Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral separations achieved

Table 6.6 CHIRAL SEPARATIONS ACHIEVED USING MOLECULARLY IMPRINTED POLYMERS. Table 6.6 CHIRAL SEPARATIONS ACHIEVED USING MOLECULARLY IMPRINTED POLYMERS.
Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

Chiral separations present special problems for vaUdation. Typically, in the absence of spectroscopic confirmation (eg, mass spectral or infrared data), conventional separations are vaUdated by analysing "pure" samples under identical chromatographic conditions. Often, two or more chromatographic stationary phases, which are known to interact with the analyte through different retention mechanisms, are used. If the pure sample and the unknown have identical retention times under each set of conditions, the identity of the unknown is assumed to be the same as the pure sample. However, often the chiral separation that is obtained with one type of column may not be achievable with any other type of chiral stationary phase. In addition, "pure" enantiomers are generally not available. [Pg.68]

An interesting and practical example of the use of thermodynamic analysis is to explain and predict certain features that arise in the application of chromatography to chiral separations. The separation of enantiomers is achieved by making one or both phases chirally active so that different enantiomers will interact slightly differently with the one or both phases. In practice, it is usual to make the stationary phase comprise one specific isomer so that it offers specific selectivity to one enantiomer of the chiral solute pair. The basis of the selectivity is thought to be spatial, in that one enantiomer can approach the stationary phase closer than the other. If there is no chiral selectivity in the stationary phase, both enantiomers (being chemically identical) will coelute and will provide identical log(Vr ) against 1/T curve. If, however, one... [Pg.80]

From the pioneering studies of Ito et al. [117], CCC has been mainly used for the separation and purification of natural products, where it has found a large number of applications [114, 116, 118, 119]. Moreover, the potential of this technique for preparative purposes can be also applied to chiral separations. The resolution of enantiomers can be simply envisaged by addition of a chiral selector to the stationary liquid phase. The mixture of enantiomers would come into contact with this liquid CSP, and enantiodiscrimination might be achieved. However, as yet few examples have been described in the literature. [Pg.10]

Although some applications for preparative-scale separations have already been reported [132] and the first commercial systems are being developed [137, 138], examples in the field of the resolution of enantiomers are still rare. The first preparative chiral separation published was performed with a CSP derived from (S -N-(3,5-dinitrobenzoyl)tyrosine covalently bonded to y-mercaptopropyl silica gel [21]. A productivity of 510 mg/h with an enantiomeric excess higher than 95% was achieved for 6 (Fig. 1-3). [Pg.12]

Capillary electrophoresis employing chiral selectors has been shown to be a useful analytical method to separate enantiomers. Conventionally, instrumental chiral separations have been achieved by gas chromatography and by high performance liquid chromatography.127 In recent years, there has been considerable activity in the separation and characterization of racemic pharmaceuticals by high performance capillary electrophoresis, with particular interest paid to using this technique in modem pharmaceutical analytical laboratories.128 130 The most frequently used chiral selectors in CE are cyclodextrins, crown ethers, chiral surfactants, bile acids, and protein-filled... [Pg.405]

Not only chiral separations have been achieved with Mi-stationary phases. It has also been demonstrated that the MIP could distinguish between ortho- and para-isomers of carbohydrate derivatives. For example, a polymer imprinted with o-aminophenyl tetraacetyl P-D-galactoside was used to analyze a mixture of p-and o-aminophenyl tetraacetyl P-D-galactoside. As expected, the imprinted ortho analyte eluted after the non-imprinted para component see Fig. 5. Although baseline separation was not obtained, a separation factor of a = 1.51 was observed [19]. [Pg.136]

The majority of the HPLC chiral separations obtained with glycopeptides-containing CSPs are anyway achieved by UV/visible (see Section 2.3.2) or fluorescence [102] detection. [Pg.135]

Geiser et al. [50,51] illustrated the screening of different chiral stationary phases and the separation of highly polar amine hydrochlorides using EEL methanol/C02 mixtures and the columns, Chiralpak-AD-H, Chiralpak-AS. This method is advantageous because no acid or base additive was required to achieve base line separation of the racemates and conversion to free base form for enantiomer separation was not required. Preparative-scale separations of the amine-hydrochloride were accomplished using similar mobile phase conditions [51], Furthermore, this is believed to be the first chiral separation of highly polar solutes without the addition of acid or base additive to effect the separation. [Pg.438]


See other pages where Chiral separations achieved is mentioned: [Pg.122]    [Pg.239]    [Pg.545]    [Pg.342]    [Pg.122]    [Pg.239]    [Pg.545]    [Pg.342]    [Pg.61]    [Pg.61]    [Pg.67]    [Pg.68]    [Pg.126]    [Pg.262]    [Pg.30]    [Pg.50]    [Pg.76]    [Pg.94]    [Pg.95]    [Pg.101]    [Pg.139]    [Pg.216]    [Pg.294]    [Pg.325]    [Pg.44]    [Pg.64]    [Pg.90]    [Pg.108]    [Pg.114]    [Pg.151]    [Pg.228]    [Pg.304]    [Pg.334]    [Pg.321]    [Pg.55]    [Pg.202]    [Pg.263]    [Pg.146]    [Pg.136]    [Pg.225]    [Pg.13]    [Pg.459]    [Pg.472]   
See also in sourсe #XX -- [ Pg.545 , Pg.546 ]




SEARCH



Achievability

Achievable

Achievement

Achievers

Chiral separations

Chiral separations chirality

Chiralic separation

© 2024 chempedia.info