Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral pollutants toxicity

I. Ah, H.Y. Aboul-Enein, Chiral pollutants Distribution, toxicity and analysis by chromatography and capillary electrophoresis, Chichester, UK John Wiley Sons (2004). [Pg.13]

Capillary electrophoresis has been used for the analysis of chiral pollutants, e.g., pesticides, polynuclear-aromatic hydrocarbons, amines, carbonyl compounds, surfactants, dyes, and other toxic compounds. Moreover, CE has also been utilized to separate the structural isomers of various... [Pg.96]

Previous sections have illustrated the complexity of most of the compound-specific analyses developed in the environmental field. It is easy then to figure out that the accurate determination of a possible enantiomeric enrichment of chiral pollutants is even more difficult owing to the many co-elution problems and low concentration levels of the analytes. This difficulty could explain the somehow limited research conducted on this topic. However, its interest is clear. Industrial contaminants, such as PCBs or toxafene, are released into the environment as racemates. Therefore, a nonracemic composition of these pollutants might be evidence of selective biotransformation and/or bioaccumulation. Some studies have also pointed to different biological and toxic behaviour for each of the enantiomers [56], something that can be especially relevant for pesticides exhibiting chiral properties. [Pg.274]

CE has been used for the analysis of chiral pollutants, e.g., pesticides, polynuclear aromatic hydrocarbons, amines, carbonyl compounds, surfactants, dyes, and other toxic compounds. Moreover, CE has also been utilized to separate the structural isomers of various toxic pollutants such as phenols, polyaromatic hydrocarbons, and so on. Sarac, Chankvetadze, and Blaschke " resolved the enantiomers of 2-hydrazino-2-methyl-3-(3,4-dihydroxyphenyl)propanoic acid using CD as the BGE additive. The CDs used were native, neutral, and ionic in nature with phosphate buffer as BGE. Welseloh, Wolf, and Konig investigated the CE method for the separation of biphenyls, using a phosphate buffer as BGE with CD as the chiral additive. Miura et al., used CE for the chiral resolution of seven phenoxy acid herbicides using methylated CDs as the BGE additives. Furthermore, the same group resolved 2-(4-chlorophenoxy) propionic acid (MCPP), 2-(2,4-dichlorophenoxy) propionic acid (DCPP), (2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chlorophenoxy) propionic acid (2,4-CPPA), [(2,4,5-... [Pg.1835]

Chiral Pollutants Distribution, Toxicity and Analysis by Chromatography and Capillary... [Pg.2]

Many xenobiotics and pollutants are chiral in nature and the two enantiomers of these pollutants may have different toxicities [13]. Additionally, the degradation of some chiral pollutants is stereospecific in the environment, and the degradation of some achiral pollutants may result in chiral toxic metabolites. Moreover, it has also been reported that enantiomers may react at different rates with achiral molecules in the presence of a chiral catalyst [13]. It is also obvious that most of the identities and the structures in nature are chiral and, therefore, that there is a greater chance that the environmental pollutants will react at different rates. Therefore,... [Pg.13]


See other pages where Chiral pollutants toxicity is mentioned: [Pg.22]    [Pg.261]    [Pg.72]    [Pg.96]    [Pg.800]    [Pg.1834]    [Pg.3]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.12]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.30]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.38]    [Pg.39]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]   


SEARCH



Chiral pollutants

The Enantioselective Toxicities of Chiral Pollutants

Toxic Pollutants

Toxic pollution

© 2024 chempedia.info