Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral cyclobutane synthesis

Strained molecules such as cyclopropanes and cyclobutanes have emerged as important intermediates in organic synthesis. We have already demonstrated here that cyclobutane derivatives can indeed serve as starting materials for the synthesis of natural as well as unnatural products. Unlike cyclopropanes, which can be prepared asymmetrically in a number of ways 175 -182>, the asymmetric synthesis of cyclobutane derivative has received less attention, and, to our best knowledge, very few reports were recorded recently 183). Obviously, the ready availability of chiral cyclobutane derivatives would greatly enhance their usefulness in the enantioselective synthesis of natural products. The overcome of this last hurdle would allow cyclobutane derivatives to play an even more important role in synthetic organic chemistry. [Pg.156]

Chiral cyclobutanes can be prepared by cycloaddition of alkenes substituted with one or more chiral auxiliary groups. A diastereofacial selectivity of 95% was observed in the diethylalu-minum chloride catalyzed cycloaddition of 1,1-dimethoxyethene (36) with ( — )-dimenlhyl-3-yl fumarate (37).16 The chiral cyclobutane 38 has been used as an intermediate in the synthesis of carbocyclic oxetanocin analogs. [Pg.146]

J. W. Pan, I. Hanna, and J. Y. Lallemand, Optically active cyclobutanones from glycals. 2. Synthesis of chiral cyclobutane derivatives by tetrahydropyran ring-opening, Tetrahedron Lett. 32 7543 (1991). [Pg.261]

Chiral crystals generated from non-chiral molecules have served as reactants for the performance of so-called absolute asymmetric synthesis. The chiral environments of such crystals exert asymmetric induction in photochemical, thermal and heterogeneous reactions [41]. Early reports on successful absolute asymmetric synthesis include the y-ray-induced isotactic polymerization of frans-frans-l,3-pentadiene in an all-frans perhydropheny-lene crystal by Farina et al. [42] and the gas-solid asymmetric bromination ofpjp -chmethyl chalcone, yielding the chiral dibromo compound, by Penzien and Schmidt [43]. These studies were followed by the 2n + 2n photodimerization reactions of non-chiral dienes, resulting in the formation of chiral cyclobutanes [44-48]. In recent years more than a dozen such syntheses have been reported. They include unimolecular di- r-methane rearrangements and the Nourish Type II photoreactions [49] of an achiral oxo- [50] and athio-amide [51] into optically active /Mactams, photo-isomerization of alkyl-cobalt complexes [52], asymmetric synthesis of two-component molecular crystals composed from achiral molecules [53] and, more recently, the conversion of non-chiral aldehydes into homochiral alcohols [54,55]. [Pg.128]

Some thermally forbidden [2 + 2]-cycloaddition reactions can be promoted by Lewis acids1-6. With chirally modified Lewis acids, the opportunity for application in asymmetric synthesis of chiral cyclobutanes arises (for a detailed description of these methods see Sections D.l. 6.1.3.. D.l. 61.4. and references 7, 28-30). Thus, a chiral titanium reagent, generated in situ from dichloro(diisopropoxy)titanium and a chiral diol 3, derived from tartaric acid, catalyzes the [2 + 2]-cycloaddition reaction of 2-oxazolidinone derivatives of a,/ -unsalurated acids 1 and the ketene thioacetal 2 in the presence of molecular sieves 4 A with up to 96 % yield and 98% ee. Fumaric acid substrates give higher yields and enantiomeric excesses than acrylic acid derivatives8. Michael additions are almost completely suppressed under these reaction... [Pg.457]

The formal [2+2] cycloaddition also provides an interesting approach for stereoselective synthesis of chiral cyclobutane derivatives. Ishihara and co-workers [70] reported the enantioselective [2 + 2] cycloaddition of unactivated alkenes 113 with a-acyloxyacroleins (Scheme 6.26). The reaction is catalyzed by chiral anunonium salt 114 and gives highly functionalized cyclobuten derivatives 115 with high... [Pg.220]

Synthesis of chiral enantiomerically pure materials from non-chiral reagents has been accomplished by crystallization of the symmetrical (in solution) substrate in appropriately packed chiral single crystals, followed by a lattice controlled reaction [6]. This concept is illustrated in Scheme 1 for the generation of chiral cyclobutane polymers from non-chiral dienes packing in engineered chiral crystals [7]. [Pg.246]

The cyclobutane ring was then cleaved by hydrolysis of the enamine and ring opening of the resulting (3-diketone. The relative configuration of the chiral centers is unaffected by subsequent transformations, so the overall sequence is stereoselective. Another key step in this synthesis is Step D, which corresponds to the transformation 10-IIa => 10-la in the retrosynthesis. A protected cyanohydrin was used as a nucleophilic acyl anion equivalent in this step. The final steps of the synthesis in Scheme 13.11 employed the C(2) carbonyl group to introduce the carboxy group and the C(l)-C(2) double bond. [Pg.1179]

Bidentate chiral water-soluble ligands such as (S,S)-2,4-bis(diphenyl-sulfonatophosphino)butane BDPPTS (Fig. 2) or (R,R) 1,2-bis(diphenylsul-fonatophosphinomethyl)cyclobutane have been prepared [25]. Their palladium complexes catalyze the synthesis of chiral acids from various viny-larenes and an ee of 43% has been reached for p-methoxystyrene with the BDPPTS ligand. Furthermore, recycling of the aqueous phase has shown that the regio- and enantioselectivity are maintained and that no palladium leaches. [Pg.108]

Minami, T., Okada, Y., Nomura, R., Hirota, S., Nagahara, Y., Mid Fukuyama, K. Synthesis and resolution of a new type of chiral bisphosphine ligand, trans-bis-l,2-(diphenylphosphino)cyclobutane. and asymmetric hydrogenation using its rhodium complex, Chem. Lett. 1986, 613-616. [Pg.100]

The fadal diastereoselectivity of intermolecular cyclopentenone [2 + 2]-photocy-cloaddition reactions is predictable if the cyclopentenone or a cyclic alkene reaction partner is chiral. Addition occurs from the more accessible side, and good stereocontrol can be expected if the stereogenic center is located at the a-position to the double bond. In their total synthesis of ( )-kelsoene (11), Piers et al. [22] utilized cyclopentenone 9 in the [2 + 2]-photocycloaddition to ethylene (Scheme 6.5). The cyclobutane 10 was obtained as a single diastereoisomer. In a similar fashion, Mehta et al. have frequently employed the fact that an approach to diquinane-type cis-bicydo [3.3.0]octenones occurs from the more accessible convex face. Applications can be found in the syntheses of (+)-kelsoene [23], (—)-sulcatine G [24], and ( )-merri-lactone A [25]. [Pg.175]

As well as [2 + 2], [4 + 4] and [4 + 4 + 4] products, the cyclodimerization of conjugated dienes also yields [4 + 2] cycloadducts47Thus, butadiene gives 4-vinyleyelohexene, ci.v-1,2-divinyl-cyclobutane and 1,5-cyclooctadiene. The influence of the catalyst and reaction conditions on the product distribution has been carefully investigated50- 53. Efforts towards asymmetric induction have concentrated on the stereoselective synthesis of 4-vinylcyclohexene as the sole chiral product. [Pg.471]

An asymmetric intramolecular Michael-aldol reaction which leads to nonracemic tricyclic cyclobutanes is performed by using TMSOTf andbis[(/ )-l-phenylethyl]amine as chiral amine, but only moderate enantioselectivities are reached (eq 68). A similar reaction sequence can also be carried out with TMSOTf and HMDS as base, with (—)-8-phenylmenthol as the chiral auxiliary however, the iodotrimethylsilane-HMDS system is more efficient in terms of yield and diastereoselectivity. The combination EtsN/TMSOTf (or some other trialkylsilyl triflates) has been used to accomplish an intramolecular Michael reaction, which was the key step for the synthesis of sesquiterpene (=E)-ricciocarpin A. ... [Pg.531]

The importance of asymmetric synthesis in organic technology was emphasized in Chapter 9. It is also possible to introduce chirality through a photochemical reaction by transferring it from a chiral auxiliary attached to the reacting molecule. If a bimolecular photoreaction is involved, the chiral auxiliary may be attached to any one of the reactants. Examples of such asymmetric induction are cyclobutanes, oxetanes, and cyclohexenes by [4 + 2] photocycloaddition (Pfoertner, 1990). [Pg.822]


See other pages where Chiral cyclobutane synthesis is mentioned: [Pg.87]    [Pg.159]    [Pg.518]    [Pg.271]    [Pg.508]    [Pg.429]    [Pg.429]    [Pg.100]    [Pg.660]    [Pg.507]    [Pg.429]    [Pg.33]    [Pg.1043]    [Pg.329]    [Pg.271]    [Pg.505]    [Pg.9]    [Pg.108]    [Pg.118]    [Pg.523]    [Pg.289]    [Pg.184]    [Pg.19]    [Pg.219]    [Pg.84]    [Pg.4]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Chiral synthesis

Cyclobutanation

Cyclobutane

Cyclobutane synthesis

Cyclobutanes

Cyclobutanes, synthesis

© 2024 chempedia.info