Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral compounds enamines

Enamine catalysis often delivers valuable chiral compounds such as alcohols, amines, aldehydes, and ketones. Many of these are normally not accessible using established reactions based on transition metal catalysts or on preformed enolates or enamines, illustrating the complimentary nature of organocatalysis and metallocatalysis. [Pg.10]

The nucleophilic properties of enamines uncovered by Stork have found a wide application in Michael additions. Secondary enamines are usually in equilibrium with the corresponding imines. These imines are generally more stable, unless the tautomeric enamine is stabilized by conjugation (Figure 7.71). The primary product of the reaction of an enamine with an a,P-unsaturated carbonyl compound is a dipolar intermediate 7.108. This intermediate is converted to a 1,5-dicarbonyl compound on exposure to aqueous add. Proton transfers can take place before hydroysis to the ketone occurs, and the stereoselectivity of the process may be determined by such steps. Moreover, the enamine addition reaction can be reversible. These problems notwithstanding, the use of chiral amines to generate imines or enamines for use as Michael donors has been widely developed. The chiral imine/enamine can be preformed or, espedally in the case of intramolecular reactions, the amine can be added to the reaction medium in stoichiometric amounts. [Pg.473]

Magnesium chloride promoted Michael additions of these compounds to unsaturated carbonyl compounds were achieved with moderate to good asymmetric induction. Chiral organotin enamines were prepared from... [Pg.242]

BF4] or [bmim][PF6] (Scheme 22.8). Bis-amide 19-catalyzed aldol reactions performed in [bmimllBFJ required a much lower excess of donor ketone 21 (3 equiv. instead of 30 equiv. in proline-catalyzed reactions) and allowed a synthesis of chiral compounds 22 bearing heterocyclic, prenyl, or metallocene units [43], The improved catalytic performance of prolinamide derivatives in ionic liquids might be due to a stabihzation of the iminium intermediate formed from the ketone and the catalyst or because of the enhanced nucleophilicity of the enamine [42]. Notably, IL dilution with water (1 1 by volume) accelerated the enamine/iminium ion hydrolysis and raised reaction rates and product yields, with the enantioselec-tivity being retained or even becoming somewhat higher than under water-free conditions [45], Furthermore, the catalyst/lL/water system could be easily recycled five times without aldol yield, dr, and ee losses. [Pg.623]

This study provided one of the first demonstrations [24] that chiral secondary amines can integrate orthogonal activation modes of carbonyl compounds (enamine and iminium ion catalysis) into more elaborate reaction sequences, catalyzing more than one stereocontroUed bond-forming event As detailed in Section 42.2.2, this concept greatly permeated and boosted future developments in the field of asymmetric organocatalytic MCRs. [Pg.1292]

Diacetates of 1,4-butenediol derivatives are useful for double allylation to give cyclic compounds. l,4-Diacetoxy-2-butene (126) reacts with the cyclohexanone enamine 125 to give bicyclo[4.3.1]decenone (127) and vinylbicy-clo[3.2.1]octanone (128)[85,86]. The reaction of the 3-ketoglutarate 130 with cij-cyclopentene-3,5-diacetate (129) affords the furan derivative 131 [87]. The C- and 0-allylations of ambident lithium [(phenylsulfonyl)methylene]nitronate (132) with 129 give isoxazoline-2-oxide 133, which is converted into c -3-hydroxy-4-cyanocyclopentene (134)[S8]. Similarly, chiral m-3-amino-4-hyd-roxycyclopentene was prepared by the cyclization of yV-tosylcarbamate[89]. [Pg.308]

If the mesomeric stabilization is provided by a double bond, the lithiated species is a homoenolate synthon, as shown in Scheme 44a. Reaction with an electrophile typically occurs at the y-position, yielding an enamine, which can then be hydrolyzed to a carbonyl compound. An important application of this approach is to incorporate a chiral auxiliary into the nitrogen substituents so as to effect an asymmetric synthesis. 2-AzaaUyl anions (Scheme 44b), which are generated by tin-lithium exchange, can be useful reagents for inter- and intramolecular cycloaddition reactions. ... [Pg.1032]

Ring-closing metathesis seems particularly well suited to be combined with Passerini and Ugi reactions, due to the low reactivity of the needed additional olefin functions, which avoid any interference with the MCR reaction. However, some limitations are present. First of all, it is not easy to embed diversity into the two olefinic components, because this leads in most cases to chiral substrates whose obtainment in enantiomerically pure form may not be trivial. Second, some unsaturated substrates, such as enamines, acrolein and p,y-unsaturated aldehydes cannot be used as component for the IMCR, whereas a,p-unsaturated amides are not ideal for RCM processes. Finally, the introduction of the double bond into the isocyanide component is possible only if 9-membered or larger rings are to be synthesized (see below). The smallest ring that has been synthesized to date is the 6-membered one represented by dihydropyridones 167, obtained starting with allylamine and bute-noic acid [133] (Fig. 33). Note that, for the reasons explained earlier, compounds... [Pg.27]

The stereoselective intermolecular cycloaddition of azides to chiral cyclopenta-none enamines was reported, but both product yields and enantiomeric excesses (ee) were low (24) (Scheme 9.24). Ethyl azidoformate (115) and A-mesyl azido-formamimidate (116) underwent 1,3-dipolar cycloaddition with the monosubsti-tuted chiral enamine 114 to give products 117 and 118 in low yields with ee of 24 and 18%, respectively. Intermolecular cycloaddition of the A-mesyl azidoforma-mhnidate 116 with the disubstituted C2-symmetric chiral enamine 119 proceeded with good diastereoselectivity to give compound 120 in 18% yield. On cleavage of the enamine unit, compound 120 afforded 118 with low ee. [Pg.636]

Pyrrolopyridine derivatives, such as compound 144, in the presence of Mg salts such as magnesium perchlorate, serve as chiral and nonchiral NADH models in the reduction of organic nitro compounds <1996JHC1211>. Similar derivatives, such as compound 145, serve as NADH models in the asymmetric reduction of methyl benzoylformate and A -acetyl enamines <1997TA3309>. [Pg.325]

The conditions for the deprotonation of chiral allylamine 8 depend on the substituent. For the phenyl compound only butyllithium is needed, however, with the alkyl compounds potassium /err-butoxide/tert-butyllithium must be used, giving access to the potassium salts 9 in these cases only. Alkylation with iodoalkanes afforded the unstable enamines, which were hydrolyzed either by water alone but preferably with dilute acid to afford the chiral 3-phenylalkanones. [Pg.686]

The alkylation of caclohexanone has been studied as a model reaction in detail. Generally, enamino compounds (126) are allowed to react with alkyl halides or a, 3-unsaturated carbonyl compounds. The enamine (126a) is prepared directly from the ketone and a chiral secondary amine (route A). A metalloenamine (126b) can be synthesized from chiral azomethine, derived from the model ketone and a primary chiral amine (route B). The primary amine used for the formation of (126b) must possess an oxygen function. This oxygen function plays a key role in the coordination of the lithium ion in the complex (126b). [Pg.202]

Quaternary stereocenters can be obtained with high selectivity with ot-amino acid amides as chiral auxiliaries, which were first converted with P-oxo esters to give enamines such as compounds 58. According to a combinatorial strategy, various enamino esters 58 were screened in Michael additions with MVK (41a) and several metal salts as catalysts. With FeCl3, however, the maximum stereoselectivity achieved was only 77% ee (with enamine 58a derived from L-isoleucine dimethylamide). Cu(0Ac)2H20 turned out be the optimal catalyst for this transformation. With L-valine diethylamide as chiral auxiliary in compound 58b, reaction proceeds with 86% yield and 98% ee after aqueous workup [79]. Importantly, this valuable method for the construction of quaternary stereocenters [80] under ambient conditions seems to be generally applicable to a number of Michael donors [81]. In all cases, the auxiliary can be quantitatively recovered after workup. [Pg.233]

In order to develop a removable analogue of 83, unsaturated compound 85 was devised as a new chiral auxiliary that can be displaced at the end of the synthesis via a retro Diels-Alder reaction and subsequent acid treatment of the resulting enamine (Scheme 1.28). [Pg.21]

Chiral amines (both primary and secondary amines) and amino acids have been used as catalysts for aldol reactions, Mannich-type reactions, and other reactions that proceed through enamine intermediates. An enamine-based catalytic cycle is shown in Scheme 2.1. The catalytic cycle includes formation of an iminium intermediate between a donor carbonyl compound and the amine-containing catalyst, the formation of an enamine intermediate from the iminium, C-C bond forma-... [Pg.19]

The direct activation and transformation of a C-H bond adjacent to a carbonyl group into a C-Het bond can take place via a variety of mechanisms, depending on the organocatalyst applied. When secondary amines are used as the catalyst, the first step is the formation of an enamine intermediate, as presented in the mechanism as outlined in Scheme 2.25. The enamine is formed by reaction of the carbonyl compound with the amine, leading to an iminium intermediate, which is then converted to the enamine intermediate by cleavage of the C-H bond. This enamine has a nucleophilic carbon atom which reacts with the electrophilic heteroatom, leading to formation of the new C-Het bond. The optically active product and the chiral amine are released after hydrolysis. [Pg.57]

Small chiral organic molecules may catalyze the asymmetric addition of ketones, and aldehydes to electron-deficient olefins, such as vinylidene acetones, nitroole-fins, enones, and vinyl sulfones. In this chapter we will describe the inter- and intramolecular reactions in which activation of the carbonyl compound takes place via enamine formation. [Pg.77]

Proline was among the first compounds to be tested in asymmetric conjugated reactions, both as a chiral ligand [8] and also as an organic catalyst [3]. The earliest asymmetric intermolecular Michael-type addition, in which proline catalyzed the reaction (arguably via enamine formation) was reported by Barbas and colleagues [9, 10] and by List and co-workers [11]. The reaction, which proceeded in high chemical yield (85-97%) and diastereoselectivity, albeit afforded near-racemic products in dimethyl sulfoxide (DMSO) [11] (Scheme 2.37). The enantio-selectivity of the addition was later ameliorated by Enders, who demonstrated that a small amount of methanol rather than DMSO was beneficial to the enantiose-lectivity of the addition reaction [12]. [Pg.79]


See other pages where Chiral compounds enamines is mentioned: [Pg.77]    [Pg.584]    [Pg.33]    [Pg.263]    [Pg.1287]    [Pg.1287]    [Pg.168]    [Pg.1194]    [Pg.105]    [Pg.187]    [Pg.457]    [Pg.399]    [Pg.178]    [Pg.58]    [Pg.251]    [Pg.2]    [Pg.46]    [Pg.80]    [Pg.68]    [Pg.134]    [Pg.359]    [Pg.20]    [Pg.49]    [Pg.489]    [Pg.54]   
See also in sourсe #XX -- [ Pg.95 , Pg.325 ]

See also in sourсe #XX -- [ Pg.95 , Pg.325 ]




SEARCH



Chiral compounds

Enamines chiral

Enamines compounds

© 2024 chempedia.info