Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysis chemistry

Ammonia N-donor Ligands Chalcogenides Solid-state Chemistry Heterogeneous Catalysis by Metals Hydrogenation Isomerization of Alkenes S-donor Ligands Surfaces. [Pg.1597]

Keywords Oxidation, green chemistry, heterogeneous, catalysis, hydrogen peroxide... [Pg.191]

Reaction Dynamics High-Resolution Spectroscopy Ultrafast Spectroscopy Biophysical Chemistry Heterogeneous Catalysis Single-Molecule Imaging and Electronics Surfaces and Interfaces Chemistry... [Pg.17]

This chapter concludes our discussion of applications of surface chemistry with the possible exception of some of the materials on heterogeneous catalysis in Chapter XVIII. The subjects touched on here are a continuation of Chapter IV on surface films on liquid substrates. There has been an explosion of research in this subject area, and, again, we are limited to providing just an overview of the more fundamental topics. [Pg.537]

Studies of surfaces and surface properties can be traced to the early 1800s [1]. Processes that involved surfaces and surface chemistry, such as heterogeneous catalysis and Daguerre photography, were first discovered at that time. Since then, there has been a continual interest in catalysis, corrosion and other chemical reactions that involve surfaces. The modem era of surface science began in the late 1950s, when instmmentation that could be used to investigate surface processes on the molecular level started to become available. [Pg.283]

Integrating ohemistry and ohemioal engineering of industrial prooesses, homogeneous and heterogeneous oatalysis. Somorjai G A 1994 Introduction to Surface Chemistry and Catalysis (New York Wiley)... [Pg.2714]

It would be difficult to over-estimate the extent to which the BET method has contributed to the development of those branches of physical chemistry such as heterogeneous catalysis, adsorption or particle size estimation, which involve finely divided or porous solids in all of these fields the BET surface area is a household phrase. But it is perhaps the very breadth of its scope which has led to a somewhat uncritical application of the method as a kind of infallible yardstick, and to a lack of appreciation of the nature of its basic assumptions or of the circumstances under which it may, or may not, be expected to yield a reliable result. This is particularly true of those solids which contain very fine pores and give rise to Langmuir-type isotherms, for the BET procedure may then give quite erroneous values for the surface area. If the pores are rather larger—tens to hundreds of Angstroms in width—the pore size distribution may be calculated from the adsorption isotherm of a vapour with the aid of the Kelvin equation, and within recent years a number of detailed procedures for carrying out the calculation have been put forward but all too often the limitations on the validity of the results, and the difficulty of interpretation in terms of the actual solid, tend to be insufficiently stressed or even entirely overlooked. And in the time-honoured method for the estimation of surface area from measurements of adsorption from solution, the complications introduced by... [Pg.292]

The scope of oxidation chemistry is enormous and embraces a wide range of reactions and processes. This article provides a brief introduction to the homogeneous free-radical oxidations of paraffinic and alkylaromatic hydrocarbons. Heterogeneous catalysis, biochemical and hiomimetic oxidations, oxidations of unsaturates, anodic oxidations, etc, even if used to illustrate specific points, are arbitrarily outside the purview of this article. There are, even so, many unifying features among these areas. [Pg.334]

Models and theories have been developed by scientists that allow a good description of the double layers at each side of the surface either at equilibrium, under steady-state conditions, or under transition conditions. Only the surface has remained out of reach of the science developed, which cannot provide a quantitative model that describes the surface and surface variations during electrochemical reactions. For this reason electrochemistry, in the form of heterogeneous catalysis or heterogeneous catalysis has remained an empirical part of physical chemistry. However, advances in experimental methods during the past decade, which allow the observation... [Pg.307]

M. Stoukides, Applications of Solid Electrolytes in Heterogeneous Catalysis, Industrial Engineering Chemistry Research 27, 1745-1750 (1988). [Pg.107]

Reactivity studies of organic ligands with mixed-metal clusters have been utilized in an attempt to shed light on the fundamental steps that occur in heterogeneous catalysis (Table VIII), although the correspondence between cluster chemistry and surface-adsorbate interactions is often poor. While some of these studies have been mentioned in Section ll.D., it is useful to revisit them in the context of the catalytic process for which they are models. Shapley and co-workers have examined the solution chemistry of tungsten-iridium clusters in an effort to understand hydrogenolysis of butane. The reaction of excess diphenylacetylene with... [Pg.106]

Microwave technology has now matured into an established technique in laboratory-scale organic synthesis. In addition, the application of microwave heating in microreactors is currently being investigated in organic synthesis reactions [9-11] and heterogeneous catalysis [12, 13]. However, most examples of microwave-assisted chemistry published until now have been performed on a... [Pg.290]

Laboratory, where he worked with John Longo and Allan Jacobson on the synthesis and characterization of mixed metal oxides and their application in heterogeneous catalysis. He joined the chemistry faculty of Northwestern University in 1984 where he is now Professor of Chemistry and an active member of the Center for Catalysis and Surface Science and the Materials Research Science and Engineering Center. Kenneth Poeppelmeier has published over 250 research papers and supervised approximately 40 Ph.D. students in the area of inorganic and solid state chemistry. He is a Fellow of the American Association for the Advancement of Science (AAAS) and the Japan Society for the Promotion of Science (JSPS) and has been a Lecturer for the National Science Council of Taiwan (1991), Natural Science Foundation of China (1999) and Chemistry Week in China (2004), and more recently an Institut Universitaire de France Professor (2003). [Pg.375]

A very important part of such an undertaking is to be clear about what stages of a chemical process generate the most waste. Often this is found to be the separation stage, after the transformation of reactants to products, where all the various components of the final mixture are separated and purified. Approaches to chemical reactions which help to simplify this step are particularly powerful. Such an approach is exemplified by heterogeneous catalysis. This is an area of chemistry where the catalysts used are typically solids, and the reactants are all in the hquid or gas phase. The catalyst can speed up the reaction, increase the selectivity of the reaction, and then be easily recovered by filtration from the liquid, and reused. [Pg.60]

Computational chemistry has reached a level in which adsorption, dissociation and formation of new bonds can be described with reasonable accuracy. Consequently trends in reactivity patterns can be very well predicted nowadays. Such theoretical studies have had a strong impact in the field of heterogeneous catalysis, particularly because many experimental data are available for comparison from surface science studies (e.g. heats of adsorption, adsorption geometries, vibrational frequencies, activation energies of elementary reaction steps) to validate theoretical predictions. [Pg.215]

HETEROGENEOUS CATALYSIS IN THE TROPOSPHERE A POSSIBLE IMPACT ON THE GLOBAL CHEMISTRY OF THE ATMOSPHERE... [Pg.48]

Acidic, high area silica-almnina had received substantial attention in ICC 1, 52-58). Perhaps the most dramatic change in the subsequent catalytic literature was the debut of zeolites. Why acid catalyzed reactions are so much faster on zeolites than on silica-alumina has been extensively discussed but probably not conclusively. One should be able to know the exact structures of catalytic sites in zeolites, but initial hopes that this would do wonders for mechanistic imderstanding have not been fully realized. Super acids and carbonium ions came into heterogeneous catalysis from homogeneous chemistry and in special cases reaction via carbonium ions seems to occur. [Pg.64]

Augustine RL (1996) In Heterogeneous Catalysis for the Synthetic Chemistry, Chap. 17. Marcel Dekker, New York... [Pg.277]

This chapter focuses on heterogeneous catalysis, which is most important in fine chemicals production. Table 3.1 presents a number of examples of catalysis in fine chemistry. These examples are divided in heterogeneously catalysed processes and homogeneously catalysed processes. A detailed treatment of heterogeneously catalysed processes for the production of fine chemicals is also given in the book edited by Sheldon and van Bekkum (2001). [Pg.59]

D. Brennan, Physical Chemistry of Heterogenous Catalysis, Mir Publ., Moscow, 1967... [Pg.217]


See other pages where Heterogeneous catalysis chemistry is mentioned: [Pg.97]    [Pg.129]    [Pg.511]    [Pg.1622]    [Pg.1621]    [Pg.97]    [Pg.129]    [Pg.511]    [Pg.1622]    [Pg.1621]    [Pg.283]    [Pg.2391]    [Pg.41]    [Pg.332]    [Pg.2094]    [Pg.96]    [Pg.168]    [Pg.166]    [Pg.418]    [Pg.156]    [Pg.6]    [Pg.6]    [Pg.466]    [Pg.68]    [Pg.1]    [Pg.32]    [Pg.66]    [Pg.69]    [Pg.152]    [Pg.299]    [Pg.185]    [Pg.423]    [Pg.553]    [Pg.116]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Catalysis chemistry

Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Fundamental chemistry heterogeneous catalysis

Heterogeneous catalysis

Heterogeneous catalysis, green chemistry

Heterogeneous chemistry

Supported Clusters and Heterogeneous Catalysis Surface Organometallic Chemistry

© 2024 chempedia.info