Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical substances models

These procedures proposed by Dubinin and by Stoeckli arc, as yet, in the pioneer stage. Before they can be regarded as established as a means of evaluating pore size distribution, a wide-ranging study is needed, involving model micropore systems contained in a variety of chemical substances. The relationship between the structural constant B and the actual dimensions of the micropores, together with their distribution, would have to be demonstrated. The micropore volume would need to be evaluated independently from the known structure of the solid, or by the nonane pre-adsorption method, or with the aid of a range of molecular probes. [Pg.227]

In this work the development of mathematical model is done assuming simplifications of physico-chemical model of peroxide oxidation of the model system with the chemiluminesce intensity as the analytical signal. The mathematical model allows to describe basic stages of chemiluminescence process in vitro, namely spontaneous luminescence, slow and fast flashes due to initiating by chemical substances e.g. Fe +ions, chemiluminescent reaction at different stages of chain reactions evolution. [Pg.54]

Conceptual Representation of a Physiologically Based Pharmacokinetic (PBPK) Model for a Hypothetical Chemical Substance... [Pg.17]

The structure and mathematical expressions used in PBPK models significantly simplify the true complexities of biological systems. If the uptake and disposition of the chemical substance(s) is adequately described, however, this simplification is desirable because data are often unavailable for many biological processes. A simplified scheme reduces the magnitude of cumulative uncertainty. The adequacy of the model is, therefore, of great importance, and model validation is essential to the use of PBPK models in risk assessment. [Pg.98]

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste sites) based on the results of studies where doses were higher or were administered in different species. Figure 3-4 shows a conceptualized representation of a PBPK model. [Pg.98]

Note This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a hypothetical chemical substance. The chemical substance is shown to be absorbed via the skin, by inhalation, or by ingestion, metabolized in the liver, and excreted in the urine or by exhalation. [Pg.99]

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to delineate and characterize the relationships between (1) the external/exposure concentration and target tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen et al. 1987 Andersen and Krishnan 1994). These models are biologically and mechanistically based and can be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from route to route, between species, and between subpopulations within a species. The biological basis of... [Pg.136]

The ionic model describes a number of metal halides, oxides, and sulfides, but it does not describe most other chemical substances adequately. Whereas substances such as CaO, NaCl, and M 2 behave like simple cations and anions held together by electrical attraction, substances such as CO, CI2, and HE do not. In a crystal of Mgp2, electrons have been transferred from magnesium atoms to fluorine atoms, but the stability of HE molecules arises from the sharing of electrons between hydrogen atoms and fluorine atoms. We describe electron sharing, which is central to molecular stability, in Chapters 9 and 10. [Pg.552]

The PBPK model for a chemical substance is developed in four interconnected steps (1) model representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan and Andersen 1994). In the early 1990s, validated PBPK models were developed for a number of toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 1994 Leung 1993). PBPK models for a particular substance require estimates of the chemical substance-specific... [Pg.73]

Leung 1993). PBPK models for a particular substance require estimates of the chemical substance-specific physicochemical parameters, and species-specific physiological and biological parameters. The numerical estimates of these model parameters are incorporated within a set of differential and algebraic equations that describe the pharmacokinetic processes. Solving these differential and algebraic equations provides the predictions of tissue dose. Computers then provide process simulations based on these solutions. [Pg.74]


See other pages where Chemical substances models is mentioned: [Pg.419]    [Pg.31]    [Pg.97]    [Pg.98]    [Pg.98]    [Pg.136]    [Pg.137]    [Pg.13]    [Pg.123]    [Pg.124]    [Pg.124]    [Pg.697]    [Pg.73]    [Pg.73]    [Pg.73]    [Pg.73]    [Pg.87]    [Pg.87]   
See also in sourсe #XX -- [ Pg.22 , Pg.23 , Pg.23 , Pg.24 , Pg.25 , Pg.26 ]




SEARCH



Chemical substances modeling fate

Model Substances

© 2024 chempedia.info