Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Reactivity and Half-Lives

The most reliable kinetic data are for atmospheric oxidation by hydroxyl radicals. These data are usually reported as second-order rate constants applied to the concentration of the chemical and the concentration of hydroxyl radicals (usually of the order of 10s radicals per cm3). The product of the assumed hydroxyl radical concentration and the second-order rate constant is a first-order rate constant from which a half-life can be deduced. [Pg.10]

Extensive research has been conducted into the atmospheric chemistry of organic chemicals because of air quality concerns. Recently, Atkinson and coworkers (1984, 1985, 1987, 1988, 1989, 1990, 1991), Altshuller (1980, 1991) and Sabljic and Glisten (1990) have reviewed the photochemistry of many organic chemicals of environmental interest for their gas phase reactions with hydroxyl radicals (OH), ozone (03) and nitrate radicals (N03) and have provided detailed information on reaction rate constants and experimental conditions, which allowed the estimation of atmospheric lifetimes. Klopffer (1991) has estimated the atmospheric lifetimes for the reaction with OH radicals to range from 1 hour to 130 years, based on these reaction rate constants and an assumed constant concentration of OH [Pg.10]

Because of the requirements of regulations for certain chemicals such as pesticides, extensive data usually exist on partitioning properties and reactivity or half-lives of active ingredients. In some cases these data have been peer-reviewed and published in the scientific literature, but often they are not generally available. A reader with interest in a specific pesticide can often obtain additional data from manufacturers or from registration literature, including accounts of chemical fate under field application conditions. Frequently these data are used as input to pesticide fate models, and the results of these modeling exercises may be available or published in the scientific literature. [Pg.11]

The chemical reactivity of these substances is a topic which continues to be the subject of extensive research thus there is often detailed, more recent information about the fate of chemical species which are of particular relevance to air or water quality. The reader is thus urged to consult the original and recent references because when considering the entire multimedia picture, it is impossible in a volume such as this to treat this subject in the detail it deserves. [Pg.11]


See other pages where Chemical Reactivity and Half-Lives is mentioned: [Pg.10]   


SEARCH



And chemical reactivity

And half-life

© 2024 chempedia.info