Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions displacement

The coordinates of thermodynamics do not include time, ie, thermodynamics does not predict rates at which processes take place. It is concerned with equihbrium states and with the effects of temperature, pressure, and composition changes on such states. For example, the equiUbrium yield of a chemical reaction can be calculated for given T and P, but not the time required to approach the equihbrium state. It is however tme that the rate at which a system approaches equihbrium depends directly on its displacement from equihbrium. One can therefore imagine a limiting kind of process that occurs at an infinitesimal rate by virtue of never being displaced more than differentially from its equihbrium state. Such a process may be reversed in direction at any time by an infinitesimal change in external conditions, and is therefore said to be reversible. A system undergoing a reversible process traverses equihbrium states characterized by the thermodynamic coordinates. [Pg.481]

In addition to the Burke and Schumann model (34) and the Displacement Distance theory, a comprehensive laminar diffusion flame theory can be written using the equations of conservation of species, energy, and momentum, including diffusion, heat transfer, and chemical reaction. [Pg.519]

A large fraction of the chemical reactions known are used to form heterocyclic compounds. Displacement reactions and cycloadditions are particularly important, and their rates are therefore of great practical interest. The same is true for the rates of reverse reactions — ring opening by displacements or retrocycloadditions. It was realized over the last 40 years that... [Pg.31]

Thus far we have discussed the direct mechanism of dissipation, when the reaction coordinate is coupled directly to the continuous spectrum of the bath degrees of freedom. For chemical reactions this situation is rather rare, since low-frequency acoustic phonon modes have much larger wavelengths than the size of the reaction complex, and so they cannot cause a considerable relative displacement of the reactants. The direct mechanism may play an essential role in long-distance electron transfer in dielectric media, when the reorganization energy is created by displacement of equilibrium positions of low-frequency polarization phonons. Another cause of friction may be anharmonicity of solids which leads to multiphonon processes. In particular, the Raman processes may provide small energy losses. [Pg.20]

Another method of simulating chemical reactions is to separate the reaction and particle displacement steps. This kind of algorithm has been considered in Refs. 90, 153-156. In particular. Smith and Triska [153] have initiated a new route to simulate chemical equilibria in bulk systems. Their method, being in fact a generalization of the Gibbs ensemble Monte Carlo technique [157], has also been used to study chemical reactions at solid surfaces [90]. However, due to space limitations of the chapter, we have decided not to present these results. [Pg.229]

Seven chemical reactions were identified from the chemistry syllabus. These chemical reactions were selected because they were frequently encountered during the 2-year chemistiy course and based on their importance in understanding concepts associated with three topics, namely, acids, bases and salts, metal reactivity series and inorganic chemistry qualitative analysis. The seven types of chemical reactions were combustion of reactive metals in air, chemical reactions between dilute acids and reactive metals, neutralisation reactions between strong acids and strong alkalis, neutralisation reactions between dilute acids and metal oxides, chemical reactions between dilute acids and metal carbonates, ionic precipitation reactions and metal ion displacement reactions. Although two of the chemical reactions involved oxidation and reduction, it was decided not to include the concept of redox in this study as students had only recently been introduced to ion-electron... [Pg.155]

The extrapolation of physical attributes of substances to the submicroscopic level of representation was evident when students explained the changes in the displacement reaction between zinc powder and aqueous copper(II) sulphate. The decrease in intensity of the blue colour of the solution was attributed by 31% of students to the removal of blue individual Cu + ions from aqueous solution. The suggestion that individual Cu + ions (the submicroscopic level) are blue may be indicative of the extrapolation of the blue colour of the aqueous copper(II) sulphate (the macroscopic level) to the colour of individual Cu + ions (the submicroscopic level). Thirty-one percent of students also suggested that reddish-brown, insoluble individual atoms of copper were produced in this chemical reaction, again suggesting extrapolation of the bulk properties of copper, i.e., being reddish-brown and insolnble in water (the macroscopic level), to individual copper atoms having these properties (the snbmicroscopic level). [Pg.163]

For reviews, see L. Melander, Isotope Effects on Reaction Rates, Ronald Press, New York, 1960 F.W. Westheimer, Chem. Rev., 61, 265 (1961) Streitwieser, A., Jr., Solvolytic Displacement Reactions, McGraw-Hill, New York, 1962 E. H. Halevi,Prog Phys. Org. Chem., 1, 109 (1963) C. J. Collins and N. S. Bowman, eis.. Isotope Effects in Chemical Reactions, Van Nostrand Reinhold Co., New York, 1970. [Pg.324]

Quantum tunnelling in chemical reactions can be visualised in terms of a reaction coordinate diagram (Figure 2.4). As we have seen, classical transitions are achieved by thermal activation - nuclear (i.e. atomic position) displacement along the R curve distorts the geometry so that the... [Pg.28]

As described in Section 6-1. work is the product of force and displacement. In a constant-volume calorimeter, the chemical reaction is contained within the sealed calorimeter, so there is no displacement and Wy = 0. Thus ... [Pg.396]

The majority of trichloroethylene present on soil surfaces will volatilize to the atmosphere or leach into the subsurface. Once trichloroethylene leaches into the soil, it appears not to become chemically transformed or undergo covalent bonding with soil components. When trichloroethylene was absorbed onto kaolinite and bentonite, the nuclear magnetic resonance (NMR) spectra showed no evidence of chemical reactions (Jurkiewicz and Maciel 1995). Because trichloroethylene is a dense nonaqueous phase liquid, it can move through the imsaturated zone into the saturated zone where it can displace soil pore water (Wershaw et al. 1994). [Pg.213]

In contrast to chemical reactions in which elimination and nucleophilic displacement are alternatives and may occur simultaneously, microbial elimiuation is less common. This term is also used for the reactiou iu which, for example, 1,2-dihaloethaues are transformed to ethene, in contrast to dehydro-halogenation in which a haloethene is produced or reductive hydrogenolysis to a haloethaue. Degradatiou iuvolviug elimiuation is found in several degradations ... [Pg.350]

The metallic impurities present in an impure metal can be broadly divided into two groups those nobler (less electronegative) and those less noble or baser (more electronegative) as compared to the metal to be purified. Purification with respect to these two classes of impurities occurs due to the chemical and the electrochemical reactions that take place at the anode and at the cathode. At the anode, the impurities which are baser than the metal to be purified would go into solution by chemical displacement and by electrochemical reactions whereas the nobler impurities would remain behind as sludges. At the cathode, the baser impurities would not get electrolytically deposited because of the unfavorable electrode potential and the concentration of these impurities would build up in the electrolyte. If, however, the baser impurities enter the cell via the electrolyte or from the construction materials of the cell, there would be no accumulation or build up because these would readily co-deposit at the cathode and contaminate the metal. It is for this reason that it is extremely important to select the electrolyte and the construction materials of the cell carefully. In actual practice, some of the baser impurities do get transferred to the cathode due to chemical reactions. As an example, let the case of the electrorefining of vanadium in a molten electrolyte composed of sodium chloride-potassium chloride-vanadium dichloride be considered. Aluminum and iron are typically considered as baser and nobler impurities in the metal. When the impure metal is brought into contact with the molten electrolyte, the following reaction occurs... [Pg.716]

When acids and bases come into contact with one another, a chemical reaction called a neutralization reaction takes place. A neutralization reaction is a double displacement reaction. In a double displacement reaction, the positive ions from one reactant take the place of the positive ions in the other reactant. For example, if hydrochloric acid and sodium hydroxide react with one another, the positive sodium ion in sodium hydroxide will take the place of the hydrogen ion in the hydrochloric acid ... [Pg.44]

Double displacement reaction A chemical reaction in which the positive ion in one reactant takes the place of the positive ion in the other reactant. [Pg.106]

When you place a piece of zinc metal into a solution of CuS04, you expect a chemical reaction because the more active zinc displaces the less active copper from its compound (Sec. 7.3). We learned in Chap. 13 that this is an oxidation-reduction reaction, involving transfer of electrons from the zinc to the copper. [Pg.230]

Reference has already been made in the last chapter to the generation of carbocations, in ion pairs, as intermediates in some displacement reactions at a saturated carbon atom, e.g. the solvolysis of an alkyl halide via the SN1 mechanism. Carbocations are, however, fairly widespread in occurrence and, although their existence is often only transient, they are of considerable importance in a wide variety of chemical reactions. [Pg.101]

A large part of the chemical reactions of 1,3,2-diazaphosphole and NHP derivatives reported to date include transformations under substitution of functional substituents at the C, N, or P ring atoms. The interest in several of these displacement processes was mainly directed by the desire to develop synthetic pathways for specifically... [Pg.86]

Atom economy is a goal only relatively recently understood. If all the atoms in the reactants are found in the desired product, we say that there is excellent atom economy. However, in many chemical reactions additional products are formed containing some of the atoms of the reactants. This is true in displacement and elimination reactions. It is also true if the reaction is not perfectly selective, and additional undesired products are formed. In most cases, the extra chemicals produced in displacement or elimination reactions or in nonselective reactions must be removed, and disposing of them adds cost and the potential for environmental problems (see Chapter 9 for further discussion of related matters). [Pg.25]

In accord with general Eyring TS theory, we may consider every elementary chemical reaction to be associated with a unique A- B supramolecular complex that dictates the reaction rate. In the present section we examine representative TS complexes from two well-known classes of chemical reactions Sn2 nucleophilic displacement reactions... [Pg.680]

GH Theory was originally developed to describe chemical reactions in solution involving a classical nuclear solute reactive coordinate x. The identity of x will depend of course on the reaction type, i.e., it will be a separation coordinate in an SnI unimolecular ionization and an asymmetric stretch in anSN2 displacement reaction. To begin our considerations, we can picture a reaction free energy profile in the solute reactive coordinate x calculated via the potential of mean force Geq(x) -the system free energy when the system is equilibrated at each fixed value of x, which would be the output of e.g. equilibrium Monte Carlo or Molecular Dynamics calculations [25] or equilibrium integral equation methods [26], Attention then focusses on the barrier top in this profile, located at x. ... [Pg.233]


See other pages where Chemical reactions displacement is mentioned: [Pg.259]    [Pg.259]    [Pg.816]    [Pg.1990]    [Pg.2971]    [Pg.12]    [Pg.137]    [Pg.41]    [Pg.526]    [Pg.745]    [Pg.272]    [Pg.209]    [Pg.226]    [Pg.145]    [Pg.165]    [Pg.92]    [Pg.363]    [Pg.95]    [Pg.204]    [Pg.114]    [Pg.202]    [Pg.217]    [Pg.292]    [Pg.472]    [Pg.204]    [Pg.229]    [Pg.129]    [Pg.360]    [Pg.239]    [Pg.604]    [Pg.610]   
See also in sourсe #XX -- [ Pg.126 ]

See also in sourсe #XX -- [ Pg.2 , Pg.58 ]

See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.2 , Pg.58 ]

See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.111 ]

See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Chemical equations double-displacement reactions

Chemical equations single-displacement reactions

Chemical reactions double displacement

Chemical reactions metal displacement

Chemical reactions single-displacement

Reaction displacement

© 2024 chempedia.info