Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equations limiting reactant determination

Write a balanced chemical equation for the reaction. Find the amount (in mol) of each reactant, using its volume and concentration. Identify the limiting reactant. Determine the amount (in mol) of mercury(II) sulfide that forms. Calculate the mass of mercury(II) sulfide that precipitates. [Pg.353]

C04-0041. Several examples of chemical reasoning are introduced in this chapter. Write out the reasoning steps that you will follow in (a) balancing a chemical equation (b) identifying the limiting reactant (c) determining whether a precipitate forms and (d) computing a reaction yield. [Pg.261]

We have data for the amounts of both starting materials, so this is a limiting reactant problem. Given the chemical equation, the first step in a limiting reactant problem is to determine the number of moles of each starting material present at the beginning of the reaction. Next compute ratios of moles to coefficients to identify the limiting reactant. After that, a table of amounts summarizes the stoichiometry. [Pg.320]

When two substances react, they react in exact amounts. You can determine what amounts of the two reactants are needed to react completely with each other by means of mole ratios based on the balanced chemical equation for the reaction. In the laboratory, precise amounts of the reactants are rarely used in a reaction. Usually, there is an excess of one of the reactants. As soon as the other reactant is used up, the reaction stops. The reactant that is used up is called the limiting reactant. Based on the quantities of each reactant and the balanced chemical equation, you can predict which substance in a reaction is the limiting reactant. [Pg.89]

In this chapter, you learned how to balance simple chemical equations by inspection. Then you examined the mass/mole/particle relationships. A mole has 6.022 x 1023 particles (Avogadro s number) and the mass of a substance expressed in grams. We can interpret the coefficients in the balanced chemical equation as a mole relationship as well as a particle one. Using these relationships, we can determine how much reactant is needed and how much product can be formed—the stoichiometry of the reaction. The limiting reactant is the one that is consumed completely it determines the amount of product formed. The percent yield gives an indication of the efficiency of the reaction. Mass data allows us to determine the percentage of each element in a compound and the empirical and molecular formulas. [Pg.44]

Introduction and Orientation, Matter and Energy, Elements and Atoms, Compounds, The Nomenclature of Compounds, Moles and Molar Masses, Determination of Chemical Formulas, Mixtures and Solutions, Chemical Equations, Aqueous Solutions and Precipitation, Acids and Bases, Redox Reactions, Reaction Stoichiometry, Limiting Reactants... [Pg.6]

It s fairly easy to conceptualize the idea of limiting reactants when you are given moles of the reactants. When you are given grams, it is not always so easy to see. When you have to solve limiting reactant problems, it is always necessary to determine the number of moles of each substance and compare that to the required ratios from the balanced chemical equation. Let s use the same reaction, but use masses instead of moles. [Pg.279]

The following balanced chemical equation shows the reaction of aluminum with copper(II) chloride. If 0.25 g of aluminum reacts with 0.51 g of copper(II) chloride, determine the limiting reactant. [Pg.254]

An unbalanced chemical equation is of limited use. Whenever you see an equation, you should ask yourself whether it is balanced. The principle that lies at the heart of the balancing process is that atoms are conserved in a chemical reaction. The same number of each type of atom must be found among the reactants and products. Also, remember that the identities of the reactants and products of a reaction are determined by experimental observation. For example, when liquid ethanol is burned in the presence of sufficient oxygen gas, the products will always be carbon dioxide and water. When the equation for this reaction is balanced, the identities of the reactants and products must not be changed. The formulas of the compounds must never be changed when balancing a chemical equation. That is, the subscripts in a formula cannot be changed, nor can atoms be added or subtracted from a formula. [Pg.66]

The calculations you did in Section 12.2 were based on having the reactants present in the ratio described by the balanced chemical equation. How can you calculate the amount of product formed when one reactant limits the amount of product and the other is in excess The first thing you must do is determine which reactant is the limiting reactant. [Pg.365]

Given a set of initial masses of reactants and a balanced chemical equation, determine the limiting reactant and calculate the masses of reactants and products after the reaction has gone to completion (Section 2.6, Problems 47 and 48). [Pg.46]

As a shortcut to determining the limiting reactant, all you have to do is to calculate the mole ratio(s) of the reactants and compare each ratio with the corresponding ratio of the coefficients of the reactants in the chemical equation thus ... [Pg.69]

To solve many of the problems in this chapter, you will need to apply the limiting reactant concept (Section 3-3). In Example 11-1, we confirm that the two reactants are initially present in the mole ratio required by the balanced chemical equation they both react completely, so there is no excess of either one. In Example 11-2, we need to determine which reactant limits the reaction. Before you proceed, be sure you understand how the ideas of Section 3-3 are used in these examples. [Pg.403]

For each of the following unbalanced chemical equations, suppose that exactly 50.0 g of each reactant is taken. Determine which reactant is limiting, and calculate what mass of the product in boldface is expected. (Assume that the limiting reactant is completely consumed.)... [Pg.313]

To determine the limiting reactant, the actual mole ratio of the available reactants must be compared with the ratio of the reactants obtained from the coefficients in the balanced chemical equation. [Pg.384]

For a balanced chemical equation of your choice, and using 25.0 g of each of the reactants in your equation, illustrate and explain how you would determine which reactant is the limiting reactant. Indicate clearly in your discussion how the choice of limiting reactant follows from your calculations. [Pg.286]

To determine the limiting reactant, first calculate the number of moles of each reactant present. Then determine how these numbers of moles correspond to the stoichiometric ratio indicated by the balanced chemical equation for the reaction. For each reactant, use the stoichiometric ratios from the balanced chemical equation to calculate how much of the other reactants would be required to react completely. [Pg.673]

H atoms (12 H2 molecules) for complete reaction. Only 9 H2 molecules are available, so H2 is the limiting reactant. Nine H2 molecules (18 H atoms) determine that 6 NH3 molecules are produced. One N2 molecule is in excess. 3.9 (a) Conservation of mass (b) Subscripts in chemical formulas should not be changed when balancing equations, because changing the subscript changes the identity of the compound law of constant composition), (c) H20(l), H20(g), NaCl(nq), NaCl(s)... [Pg.1067]

A chemical equation may be interpreted in terms of moles of reactants and products, as well as in terms of molecules. Using this molar interpretation, you can convert from the mass of one substance in a chemical equation to the mass of another. The maximum amount of product from a reaction is determined by the limiting reactant, the reactant that is completely used up the other reactants are in excess. [Pg.113]

Given a chemical equation, or information from which it may be determined, and initial quantities of two or more reactants, (a) identify the limiting reactant, (b) calculate the theoretical yield of a specified product, assuming complete use of the limiting reactant, and (c) calculate the quantity of the reactant initially in excess that remains unreacted. [Pg.282]


See other pages where Chemical equations limiting reactant determination is mentioned: [Pg.44]    [Pg.283]    [Pg.497]    [Pg.145]    [Pg.357]    [Pg.303]    [Pg.357]    [Pg.99]    [Pg.380]    [Pg.26]    [Pg.134]    [Pg.17]    [Pg.105]    [Pg.306]   
See also in sourсe #XX -- [ Pg.204 , Pg.207 ]




SEARCH



Chemical equation reactants

Chemical equations limiting reactant

Chemical reactant

Chemicals equations

Determinant equation

Equations limits

Reactants equations

© 2024 chempedia.info