Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Dimerization Technolog Development

The yeast three-hybrid (Y3H) system is a cellular assay system designed for the identification and characterization of small molecule-protein interactions in intact cells [25]. It uses yeast Saccharomyces cerevisiae as a host system and combines aspects of the yeast two-hybrid (Y2H) system [26] with recent developments in chemical dimerizer technology [27, 28],... [Pg.1120]

A major focus, following the initial reports, was on refining the tools used to achieve chemical dimerization - in particular, the dimerizers themselves. Important aims were to improve chemical feasibility, specificity, and pharmacological properties, the latter to permit studies in experimental animals. This section will describe the options that have evolved for different types of induced dimerization. The focus will be on the FKBP-based technologies and applications developed by the author s group and its collaborators, although other systems will also be mentioned. [Pg.229]

Should MTBE be banned, what would be the logical replacement(s) There are several options available. Several refiners opted to build MTBE capacity and avoid purchasing the ether on the open market. MTBE units were an option to use the facility s isobutylenes. Several licensed processes can be used to convert existing MTBE units. Kvaerner and Lyondell Chemical Co. offer technologies to convert an MTBE unit to produce iso-octane, as shown in Fig. 18.27.12 Snamprogetti SpA and CDTECH also have an iso-octene/iso-octane process. These processes can use various feedstocks such as pure iso-butane, steam-cracked C4 raffinate, 50/50 iso-butane/iso-butene feeds, and FCC butane-butane streams. The process selectively dimerizes C4 olefins to iso-octene and then hydrogenates the iso-octene (di-iso-butene) into iso-octane. The processes were developed to provide an alternative to MTBE. The dimerization reactor uses a catalyst similar to that for MTBE processes thus, the MTBE reactor can easily be converted to... [Pg.838]

BP Chemicals studied the use of chloroaluminates as acidic catalysts and solvents for aromatic alkylation [43]. At present, the AICI3 existing technology (based on red oil catalyst) is still used industrially, but continues to suffer from poor catalyst separation and recycle [44]. The aim of the work was to evaluate the AlCls-based ionic liquids, with the emphasis placed on the development of a clean and recyclable system for the production of ethylbenzene (benzene/ethene alkylation) and synthetic lubricants (alkylation of benzene with 1-decene). The production of linear alkyl benzene (LAB) has also been developed by Akzo [45]. The eth)4benzene experiments were run by BP in a pilot loop reactor similar to that described for the dimerization (Fig. 5.4-8). [Pg.483]


See other pages where Chemical Dimerization Technolog Development is mentioned: [Pg.228]    [Pg.1910]    [Pg.1122]    [Pg.185]    [Pg.186]    [Pg.72]    [Pg.126]    [Pg.444]    [Pg.914]    [Pg.186]    [Pg.252]    [Pg.186]    [Pg.86]    [Pg.192]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Chemical Dimerization Technology

Chemical development

Chemical technology

Development technology

Technological developments

© 2024 chempedia.info