Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical change determining

The relative strengths of the bonds in reactants and products of a chemical change determine whether heat is released or absorbed. In fact, as you ll see in Chapter 20, bond strength is one of two essential factors determining whether the change occurs at all. In this section, we ll discuss the importance of bond energy in chemical change, especially in the combustion of fuels and foods. [Pg.283]

Before we proceed to discuss energy changes in detail it is first necessary to be clear that two factors determine the stability of a chemical system—stability here meaning not undergoing any chemical change. These two factors are the energy factor and the kinetic factor,... [Pg.62]

Catalysts that do not contain potassium lose activity very quickly because of coke deposition on the surface of the catalyst. Chemical changes that occur when the catalyst is removed from the operating environment make it very difficult to determine the nature of most of the promoter elements during the reaction, but potassium is always found to be present as potassium carbonate in the used catalyst. The other promoters are claimed to increase selectivity and the operating stabiUty of the catalyst. [Pg.198]

In tills chapter a number of reactions are discussed in which die rate-determining step occurs in die solid state, and die solid is chemically changed by die reaction. [Pg.251]

Needless to say, if ionic character affects the energy stability of a chemical bond it also affects the chemistry of that bond. The tendency toward minimum energy is one of the factors that determine what chemical changes will occur. As a bond becomes stronger, more energy is required to break that bond to form another compound. Hence we see that ionic bonds are favored over covalent bonds and that ionic character in a bond affects its chemistry. [Pg.290]

Originally, the number of coulombs passed was determined by including a coulometer in the circuit, e.g. a silver, an iodine or a hydrogen-oxygen coulometer. The amount of chemical change taking place in the coulometer can be ascertained, and from this result the number of coulombs passed can be calculated, but with modern equipment an electronic integrator is used to measure the quantity of electricity passed. [Pg.531]

There is supporting evidence in the literature for the validity of this method two cases in particular substantiate it. In one, tests were made on plastics heated in the pressure of air. Differential infrared spectroscopy was used to determine the chemical changes at three temperatures, in the functional groups of a TP acrylonitrile, and a variety of TS phenolic plastics. The technique uses a film of un-aged plastic in the reference beam and the aged sample in the sample beam. Thus, the difference between the reference and the aged sample is a measure of the chemical changes. [Pg.117]

The lanthanide formates decompose above 670 K [1040] and the chemical changes proceed through the oxyformate [1041] and the oxy-carbonate to Ln203. Values of E determined by non-isothermal methods [1040] decreased with increase in atomic number for reaction in air but were approximately equal for reactions in vacuum. [Pg.215]

Although thermodynamics can be used to predict the direction and extent of chemical change, it does not tell us how the reaction takes place or how fast. We have seen that some spontaneous reactions—such as the decomposition of benzene into carbon and hydrogen—do not seem to proceed at all, whereas other reactions—such as proton transfer reactions—reach equilibrium very rapidly. In this chapter, we examine the intimate details of how reactions proceed, what determines their rates, and how to control those rates. The study of the rates of chemical reactions is called chemical kinetics. When studying thermodynamics, we consider only the initial and final states of a chemical process (its origin and destination) and ignore what happens between them (the journey itself, with all its obstacles). In chemical kinetics, we are interested only in the journey—the changes that take place in the course of reactions. [Pg.649]

There are two principal chemical concepts we will cover that are important for studying the natural environment. The first is thermodynamics, which describes whether a system is at equilibrium or if it can spontaneously change by undergoing chemical reaction. We review the main first principles and extend the discussion to electrochemistry. The second main concept is how fast chemical reactions take place if they start. This study of the rate of chemical change is called chemical kinetics. We examine selected natural systems in which the rate of change helps determine the state of the system. Finally, we briefly go over some natural examples where both thermodynamic and kinetic factors are important. This brief chapter cannot provide the depth of treatment found in a textbook fully devoted to these physical chemical subjects. Those who wish a more detailed discussion of these concepts might turn to one of the following texts Atkins (1994), Levine (1995), Alberty and Silbey (1997). [Pg.85]

The coefficients of any balanced redox equation describe the stoichiometric ratios between chemical species, just as for other balanced chemical equations. Additionally, in redox reactions we can relate moles of chemical change to moles of electrons. Because electrons always cancel in a balanced redox equation, however, we need to look at half-reactions to determine the stoichiometric coefficients for the electrons. A balanced half-reaction provides the stoichiometric coefficients needed to compute the number of moles of electrons transferred for every mole of reagent. [Pg.1397]

It is widely recognized that the solvent in which any chemical reaction takes place is not merely a passive medium in which relevant molecules perform the solvent itself makes an essential contribution to the reaction. The character of the solvent will determine which chemical species are soluble enough to enter solution and hence to react, and which species are insoluble, and thus precipitate out of solution, thereby being prevented from undergoing further chemical change. In the case of water, as will be seen, polar and ionic species are the ones that most readily dissolve. But even so, mere polarity or ionic character is not sufficient to ensure solubility. Solubility depends on a number of subtle energetic factors, and the possible interactions between water and silver chloride, for example, do not fulfil the requirements despite the ionic nature of the silver salt. Hence silver chloride is almost completely insoluble in water. [Pg.30]

Spectrophotometric and spectrofluorimetric methods provide a wealth of information concerning structural determinations (identification, purity and precise measurement of concentration) and chemical changes in alkaloids. These techniques yield both quantitative and qualitative data on the effect of solvents, pH and other physiological conditions [141-143]. X-ray crystallography, H and NMR spectroscopy, infrared spectroscopy (IR) and circular dichroic spectroscopy were also used to study the physical properties... [Pg.173]

To describe in fundamental terms the dissolution of coal in a hydrogen-donor solvent requires an experimental approach that allows the chemical changes that occur within the coal during dissolution to be discussed. This, in turn, requires a direct method of determining the structural features in coal before it is reacted. [Pg.242]

The rate of an exothermic chemical reaction determines the rate of energy release, so factors which affect reaction kinetics are important in relation to possible reaction hazards. The effects of proportions and concentrations of reactants upon reaction rate are governed by the Law of Mass Action, and there are many examples where changes in proportion and/or concentration of reagents have transformed an... [Pg.2123]


See other pages where Chemical change determining is mentioned: [Pg.181]    [Pg.160]    [Pg.270]    [Pg.27]    [Pg.409]    [Pg.86]    [Pg.226]    [Pg.358]    [Pg.244]    [Pg.160]    [Pg.101]    [Pg.807]    [Pg.1048]    [Pg.1082]    [Pg.44]    [Pg.69]    [Pg.96]    [Pg.652]    [Pg.6]    [Pg.17]    [Pg.110]    [Pg.233]    [Pg.261]    [Pg.260]    [Pg.8]    [Pg.60]    [Pg.184]    [Pg.39]    [Pg.50]    [Pg.223]    [Pg.68]    [Pg.186]    [Pg.186]    [Pg.242]    [Pg.29]   
See also in sourсe #XX -- [ Pg.45 ]

See also in sourсe #XX -- [ Pg.45 , Pg.46 ]




SEARCH



Chemical changes

© 2024 chempedia.info