Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge transfer characterized

In view of the magnitude of crystal-field effects it is not surprising that the spectra of actinide ions are sensitive to the latter s environment and, in contrast to the lanthanides, may change drastically from one compound to another. Unfortunately, because of the complexity of the spectra and the low symmetry of many of the complexes, spectra are not easily used as a means of deducing stereochemistry except when used as fingerprints for comparison with spectra of previously characterized compounds. However, the dependence on ligand concentration of the positions and intensities, especially of the charge-transfer bands, can profitably be used to estimate stability constants. [Pg.1273]

Finally, stereoregularity of the initial PAN also affects the disposition of a CTC obtained from this polymer to the formation of photoinduced states with complete charge transfer. Both the values of the stationary concentration of these states and the rate of growth to this level, are considerably higher for a PCS obtained from the polymer with elevated stereoregularity. All this characterizes the effect of PCS stereoregularity on their reactivity in the formation of a CTC. The semi-conductive properties of PCS complexes of various classes with electron donors have been studied267, 268 ... [Pg.34]

Complexes. The structure of an n a charge-transfer complex between quinoxaline and two iodine atoms has been obtained by X-ray analysis and its thermal stability compared with those of related complexes. The hydrogen bond complex between quinoxaline and phenol has been studied by infrared spectroscopy and compared with many similar complexes. Adducts of quinoxaline with uranium salts and with a variety of copper(II) alkano-ates have been prepared, characterized, and studied with respect to IR spectra or magnetic properties, respectively. [Pg.94]

More recently, Kim et al. synthesized dendritic [n] pseudorotaxane based on the stable charge-transfer complex formation inside cucurbit[8]uril (CB[8j) (Fig. 17) [59]. Reaction of triply branched molecule 47 containing an electron deficient bipyridinium unit on each branch, and three equiv of CB[8] forms branched [4] pseudorotaxane 48 which has been characterized by NMR and ESI mass spectrometry. Addition of three equivalents of electron-rich dihydrox-ynaphthalene 49 produces branched [4]rotaxane 50, which is stabilized by charge-transfer interactions between the bipyridinium unit and dihydroxy-naphthalene inside CB[8]. No dethreading of CB[8] is observed in solution. Reaction of [4] pseudorotaxane 48 with three equiv of triply branched molecule 51 having an electron donor unit on one arm and CB[6] threaded on a diaminobutane unit on each of two remaining arms produced dendritic [ 10] pseudorotaxane 52 which may be considered to be a second generation dendritic pseudorotaxane. [Pg.133]

It should be mentioned that one can detect two types of equilibrium in the model of charge transfer in the absorbate - adsorbent system (i) complete transition of chemisorbed particles into the charged form and (ii) flattening of Fermi level of adsorbent and energy level of chemisorbed particles. The former type takes place in the case of substantially low concentration of adsorbed particles characterized by high affinity to electron compared to the work function of semiconductor (for acceptor adsorbates) or small value of ionization potential (for donor adsorbates). The latter type can take place for sufficiently large concentration of chemisorbed particles. [Pg.27]

The rate of the electrode process—similar to other chemical reactions— depends on the rate constant characterizing the proportionality of the rate to the concentrations of the reacting substances. As the charge transfer reaction is a heterogeneous process, these constants for first-order processes are mostly expressed in units of centimetres per second. [Pg.266]

In addition to the thermodynamic quantity E°, the electrode reaction is characterized by two kinetic quantities the charge transfer coefficient a and the conditional rate constant k°. These quantities are often sufficient for a complete description of an electrode reaction, assuming that they are constant over the given potential range. Table 5.1 lists some examples of the constant k. If the constant k° is small, then the electrode reaction occurs only at potentials considerably removed from the standard potential. At these potential values practically only one of the pair of electrode reactions proceeds which is the case of an irreversible or one-way electrode reaction. [Pg.268]

The charge transfer reaction (5.2.39) is characterized by the formal electrode potential the conditional rate constant of the electrode reaction kf and the charge transfer coefficient aly while the reaction (5.2.40) is characterized by the analogous quantities E2y kf and a2. If the rate constants of the electrode reactions, which are functions of the potential, are denoted as in Eqs (5.2.39) and (5.2.40) and the concentrations of substances Au A2 and A3 are cly c2 and c3, respectively, then... [Pg.274]

The constants characterizing the electrode reaction can be found from this type of polarization curve in the following manner. The quantity k"e is determined directly from the half-wave potential value (Eq. 5.4.27) if E0r is known and the mass transfer coefficient kQx is determined from the limiting current density (Eq. 5.4.20). The charge transfer coefficient oc is determined from the slope of the dependence of In [(yd —/)//] on E. [Pg.298]

In an ideal case the electroactive mediator is attached in a monolayer coverage to a flat surface. The immobilized redox couple shows a significantly different electrochemical behaviour in comparison with that transported to the electrode by diffusion from the electrolyte. For instance, the reversible charge transfer reaction of an immobilized mediator is characterized by a symmetrical cyclic voltammogram ( pc - Epa = 0 jpa = —jpc= /p ) depicted in Fig. 5.31. The peak current density, p, is directly proportional to the potential sweep rate, v ... [Pg.331]


See other pages where Charge transfer characterized is mentioned: [Pg.210]    [Pg.147]    [Pg.217]    [Pg.210]    [Pg.147]    [Pg.217]    [Pg.313]    [Pg.1968]    [Pg.512]    [Pg.251]    [Pg.171]    [Pg.56]    [Pg.996]    [Pg.1094]    [Pg.1127]    [Pg.1158]    [Pg.176]    [Pg.541]    [Pg.470]    [Pg.110]    [Pg.325]    [Pg.7]    [Pg.370]    [Pg.340]    [Pg.286]    [Pg.353]    [Pg.398]    [Pg.401]    [Pg.9]    [Pg.32]    [Pg.645]    [Pg.24]    [Pg.482]    [Pg.72]    [Pg.144]    [Pg.251]    [Pg.13]    [Pg.147]    [Pg.149]    [Pg.155]    [Pg.245]    [Pg.258]   
See also in sourсe #XX -- [ Pg.75 , Pg.81 , Pg.163 , Pg.166 , Pg.171 , Pg.180 , Pg.182 , Pg.185 , Pg.206 ]




SEARCH



© 2024 chempedia.info