Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Centerline distance

Inputs were provided to the cost model for an Alaskan site with an area of 10,000 fU and a soil density of 100 Ib/ft. The specific heat of the soil was 0.20 British thermal units (Btu) per pound per degree Fahrenheit. The HeatTrode centerline distance was 5 ft, and each HeatTrode was installed to a depth of 10 ft (D17162K, p. 12). [Pg.503]

Li and Manas-Zloczower (31) used the CFM commercial FIDAP FEM package to simulate the three-dimensional isothermal flow patterns and distributive mixing in three consecutive filled, closed C-shaped chambers of fully intermeshing, counterrotating extruders, having the dimensions of Leistritz 30.34 (30 denotes the centerline distance and 34 the barrel diameter in mm units). An equal pressure drop per C-shaped chamber was applied for the calculations. The melt was assumed to be Power Law above y() and Newtonian below it. The design, process, and material variables are given by the authors. [Pg.537]

Note OD = screw outer diameter ID = screw inner diameter a = centerline distance M = torque/shaft Z = number of flights (75). [Pg.573]

A. Geberg addressed the geometric kinematic problem with a mathematical equivalent view. He discovered the fact that the co-rotation of two shafts around their fixed axes is the kinematic equivalent of the movement without rotation of one shaft around another fixed shaft (Fig. 2.1). In the case of this so-called movement without rotation , which happens when the profiles are touching, all mass points of the moved screw move in circles with radii equivalent to the centerline distance (Fig. 2.1). [Pg.10]

Since the - mathematically precise - system is intended to be fully wiping, the central shaft can be a wax blank that is shaped to its corresponding contour by the metal moved screw. The moved screw (Fig. 2.1) with its metal tip x then forms the flank arc y (bold) in the fixed wax shaft. As all mass points of the moved screw describe circles with a radius equal to the centerline distance, including the tip x, the flank arc y of the wax screw must also be an arc with a radius equal to the centerline distance of the two screw shafts an astonishingly simple solution. [Pg.11]

The first and the primary claims are extremely telling Double-or multiple-shaft corotating extruders in single or multiple-flighted versions with the sealing profile, i.e., defined with the flank profiles in cross-section by circles with radius equal to the centerline distance (see Section 2.2.1). [Pg.15]

Centerline distance enlargement S constant 2 Danger of collision... [Pg.29]

A screw profile with Z threads can be divided into 2Z symmetrical parts, as illustrated in Fig. 5.1. A screw profile is composed of three parts within this symmetrical area tip, flank, and root. The tip comprises an arc whose diameter equals the external diameter of the screw profile and whose center point is the center of the circle. One edge of each tip passes over to the adjacent flank area. For screws that wipe the inside of the barrel tightly, the flank areas each comprise an arc whose radius equals the centerline distance. The flanks then pass tangentially over into the root areas, the diameters of which correspond to the diameter of the screw core and whose circle center is the center of the profile. The tip cleans the root of the opposite screw and vice versa. The corner of the profile between the tip and the flank cleans the flanks. [Pg.92]

Between the lines of symmetry 1 and 2, we draw the angle-bisecting line 5 on the side facing away from the profile to be drawn. Following this line 5 by half the centerline distance, we obtain point R... [Pg.94]

If the ratio of centerline distance to diameter is too small, the screw cannot intermesh properly with the external wall. This occurs when the tip angle is negative. The fully wiped geometry can be calculated according to Table 5.1 for the boundary condition KW0 = 0. The gives the following condition... [Pg.97]

Table 5.2 Centerline distance limits for different numbers of threads for fully wiped geometries... Table 5.2 Centerline distance limits for different numbers of threads for fully wiped geometries...
The tip angle may be even smaller in the case of geometries with clearances, so that for large clearances the values for the minimum centerline distance in Table 5.2 may not result in selfcleaning geometries. [Pg.98]

Figure 5.10 shows the tip angle for fully wiped geometries according to the ratio of centerline distance to diameter. We can also see the limits of infinitesimally small tip angles for numbers of threads greater than one. [Pg.98]

Barrel internal diameter D Centerline distance A Radial screw clearance 8 Reciprocal screw clearance s 57.350 mm 48.000 mm 0.170 mm 0.525 mm... [Pg.130]

Power density has increased significantly since the early days of extruder construction. A typical factor, and an important one for scaling up laboratory machines to production machines, is the ratio of screw shaft torque to centerline distance to the power of three. In the 1960s, a value of T/a3=5 Nm/cm3 was typical today values in excess of 13 Nm/cm3 are achieved. [Pg.343]

The hairpin width and the centerline distance of the two legs (shells) of the hairpin heat exchanger are limited by the outside diameter of the closure flanges at the tubesheets. This diameter, in turn, is a function of the design pressures. As a general rule, for low-to-moderate design pressures (less than 15 bar), the center-to-center distance is approximately... [Pg.1244]

The main degrees of freedom in twin-screw extruder design are geometry (cross-section profile of screw pair), power (torque capacity) and speed (rpm). The essential geometry of any co-rotating twin-screw extruder is defined by two key parameters 1) centerline distance [a] between the shafts, and 2) outer diameter to inner (root) diameter ratio [OD/ID], see Fig. 3. For a fixed centerline, the OD/ID ratio defines the free volume of the extruder. [Pg.3168]

Fig. 4). Geometry constraints limit the 3-lobe design to a more shallow channel depth (lower OD/ID ratio) than 2-lobe units with identical centerline distances. This means that the 3-lobe machine can have a greater shaft diameter for power transmission, impose higher average shear rates on material, but have substantially less free volume. In practice, because of the low free volume relative to the available power, the 3-lobe extruder is often volume, i.e., rate, limited for many mixing tasks. [Pg.3169]

Figure 28.21 shows another example of a test for the type of ground flare burners commonly used in the array shown in Figure 28.19. These are full-scale burners being tested to determine flame heights and centerline-to-centerline distances for cross-lighting. A range of different molecular weight fuels are tested to determine the performance over a range of conditions that might be encountered in the field. Figure 28.21 shows another example of a test for the type of ground flare burners commonly used in the array shown in Figure 28.19. These are full-scale burners being tested to determine flame heights and centerline-to-centerline distances for cross-lighting. A range of different molecular weight fuels are tested to determine the performance over a range of conditions that might be encountered in the field.

See other pages where Centerline distance is mentioned: [Pg.1076]    [Pg.78]    [Pg.79]    [Pg.300]    [Pg.301]    [Pg.572]    [Pg.577]    [Pg.918]    [Pg.166]    [Pg.166]    [Pg.27]    [Pg.28]    [Pg.28]    [Pg.95]    [Pg.97]    [Pg.123]    [Pg.123]    [Pg.261]    [Pg.262]    [Pg.262]    [Pg.266]    [Pg.272]    [Pg.343]    [Pg.345]    [Pg.899]    [Pg.348]    [Pg.3169]    [Pg.943]    [Pg.1080]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



© 2024 chempedia.info