Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cation solvating solvent

The proportion of C-alkylation increases in the order OTs < Br < I, a sequence which is often associated with the balance of hardness between nucleophile and nucleofuge (Smith and Hanson, 1971). The work of Kurts et al. (1974) indicates that the overall reaction rate of the crown ether-assisted alkylation increases in the order Na+ < K+ < Rb+ < Cs+, which, according to these authors, reflects the increasing distance between cation and anion in the ion pairs. The high reactivity of the tetraphenylarsenate also fits in with this picture. The decrease of the kc/k0 ratio is only small in good cation-solvating solvents such as dimethyl sulfoxide (DMSO). Alkylation of the sodium derivative of [103] with ethyl iodide in DMSO gave kc/kQ = 15.7 addition of... [Pg.318]

The mono-anion of ascorbic acid is an ambident anion that can display nucleophilicity at the C2 as well as 03 positions. This ambident character was first observed by Jackson and Jones (4) in the synthesis of 3-0-benzylascorbic acid by alkylation of sodium ascorbate with benzyl chloride. In strongly cation solvating solvents, such as dimethyl sulfoxide (DMSO), exclusive 03 alkylation was observed. In water, a mixture of the expected 03 alkylated 13 and C2 benzylated product 14 was produced. [Pg.62]

This marked sensitivity of the stereochemistry of anionic polymerization to the nature of the counterion and solvent can be traced to the structure of the propagating chain end. The latter involves a carbon-metal bond which can have variable characteristics, ranging all the way from highly associated species with covalent character to a variety of ionic species (Hsieh and CJuirk, 1996). The presence of a more electropositive metal and/or a cation-solvating solvents, such as ethers, can effect a variety of changes in the nature of the carbanionic chain end (a) the degree of association of the chain ends can decrease or be eliminated (b) the interaction of the cation with the anion can be decreased... [Pg.76]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

It was noted that, on going from tetrabutylammonium to tetrabutylphosphoni-um, salts with a common anion displayed identical solvation properties. FLence, with these simple cations, the solvent properties are dominated by the choice of anion. It is possible that, had cations with acidic protons, such as triallcylammoni-um and trialkylphosphonium, been included in the study, these may then have also had an influence. [Pg.95]

In contrast to the allyl system, where the reduction of an isolated double bond is investigated, the reduction of extensively delocalized aromatic systems has been in the focus of interest for some time. Reduction of the systems with alkali metals in aprotic solvents under addition of effective cation-solvation agents affords initially radical anions that have found extensive use as reducing agents in synthetic chemistry. Further reduction is possible under formation of dianions, etc. Like many of the compounds mentioned in this article, the anions are extremely reactive, and their intensive studies were made possible by the advancement of low temperature X-ray crystallographic methods (including crystal mounting techniques) and advanced synthetic capabilities. [Pg.17]

In the radical anions of the norbornane-linked naphthalenes [37] mentioned earlier (Gerson et al, 1990) no counterion effects were detected for [37a], which has a small spatial separation, but the esr/ENDOR spectra of [37b]- and [37c]- indicate that the electron-spin transfer between the naphthalene moieties is determined by the rate of synchronous counterion migration (Gerson et al., 1990). For tight ion pairs the electron is localized, while for loose ion-pair conditions, e.g. by using solvents of high cation-solvating power, the transfer becomes fast on the hyperfine timescale (k > 107 Hz). [Pg.33]

Polymerisations of undiluted, bulk monomer are rare except for those initiated by ionising radiations and they require a special treatment which will be given later. The most common situation is to have the propagating ions in a mixture of monomer and solvent, and as the solvation by the solvent is ubiquitous and may dominate over that by other components of the reaction mixture, mainly because of the mass-action effect, it will not be noted by any special symbol, except in a few instances. This means that we adopt the convention that the symbol Pn+ denotes a growing cation solvated mainly by the solvent correspondingly kp+ denotes the propagation constant of this species, subject to the proviso at the end of Section 2.3. Its relative abundance depends upon the abundance of the various other species in which the role of the solvent as the primary solvator has been taken over by any or all of the anion or the monomer or the polymer. The extent to which this happens depends on the ionic strength (essentially the concentration of the ions), and the polarity of the solvent, the monomer and the polymer, and their concentrations. [Pg.509]

Following earlier studies of the oxidation of formic and oxalic acids by pyridinium fluoro-, chloro-, and bromo-chromates, Banerji and co-workers have smdied the kinetics of oxidation of these acids by 2, 2Tbipyridinium chlorochromate (BPCC) to C02. The formation constant of the initially formed BPCC-formic acid complex shows little dependence on the solvent, whilst a more variable rate constant for its decomposition to products correlates well with the cation-solvating power. This indicates the formation of an electron-deficient carbon centre in the transition state, possibly due to hydride transfer in an anhydride intermediate HCOO—Cr(=0)(0H)(Cl)—O—bpyH. A cyclic intermediate complex, in which oxalic acid acts as a bidentate ligand, is proposed to account for the unfavourable entropy term observed in the oxidation of this acid. [Pg.219]

Fig. 2.6 Ion pairs. A two-dimensional representation of (a) a solvent-separated pair of ions, each still retaining its intact shell of solvating solvent molecules (b) a solventsharing ion pair, which has lost some of the solvent between the partners, so that one layer of solvent shared between them separates them (c) a contact ion pair, the cation and anion being contiguous. Fig. 2.6 Ion pairs. A two-dimensional representation of (a) a solvent-separated pair of ions, each still retaining its intact shell of solvating solvent molecules (b) a solventsharing ion pair, which has lost some of the solvent between the partners, so that one layer of solvent shared between them separates them (c) a contact ion pair, the cation and anion being contiguous.
In this section, we describe three simple cases of rates and mechanisms that have been found suitable for the interpretation of extraction kinetic processes in kinetic regimes. These simple cases deal with the exuaction reaction of a monovalent metal cation (solvation water molecules are omitted in the notation) with a weakly acidic solvent extraction reagent, BH. The overall extraction reaction is... [Pg.233]

At present, the correlation contains one transition metal complex, Cu(Hfacac)2. The results on this complex are very interesting and somewhat unusual for a transition metal system in that enthalpies have been obtained in a poorly solvating solvent with nonionic donors (52), instead of the t5 ical stability constant study on a metal cation in some highly polar solvent. Data from this latter type of investigation have many practical uses, but are impossible to interpret and understand. The transition metal ion complex we have studied can be incorporated into the E and C scheme using the same base parameters that are used to correlate the enthalpies of formation of all the other Lewis acid-base adducts in the scheme. [Pg.111]


See other pages where Cation solvating solvent is mentioned: [Pg.315]    [Pg.348]    [Pg.351]    [Pg.241]    [Pg.375]    [Pg.22]    [Pg.32]    [Pg.34]    [Pg.711]    [Pg.76]    [Pg.52]    [Pg.238]    [Pg.3]    [Pg.188]    [Pg.315]    [Pg.348]    [Pg.351]    [Pg.241]    [Pg.375]    [Pg.22]    [Pg.32]    [Pg.34]    [Pg.711]    [Pg.76]    [Pg.52]    [Pg.238]    [Pg.3]    [Pg.188]    [Pg.445]    [Pg.176]    [Pg.18]    [Pg.19]    [Pg.224]    [Pg.32]    [Pg.33]    [Pg.276]    [Pg.550]    [Pg.591]    [Pg.596]    [Pg.305]    [Pg.341]    [Pg.344]    [Pg.52]    [Pg.45]    [Pg.26]    [Pg.123]    [Pg.125]    [Pg.320]    [Pg.330]    [Pg.143]    [Pg.690]    [Pg.359]    [Pg.22]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Cation solvators

Dipolar aprotic solvent cation solvation

Solvates, cation

Solvation/solvents

Solvent cationization

Solvent solvating

© 2024 chempedia.info