Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic utilization factor

As can be seen, a utilization factor close to unity can be achieved if the reaction is mainly occuring in the bulk of the liquid phase. From a practical point of view, it means that homogeneous catalytic reactions are performed in reactors with continuous liquid phase and dispersed gas phase. [Pg.358]

It is worth noting that the remarkable effect described for the carbon support porosity on the metal utilization factor and hence on the specific electrocat-alytic activity in methanol electrooxidation was only observed when the catalysts were incorporated in ME As and measured in a single cell. The measurements performed for thin catalytic layers in a conventional electrochemical cell with liquid electrolyte provided similar specific catalytic activities for Pt-Ru/C samples with similar metal dispersions but different BET surface areas of carbon supports [223]. The conclusions drawn from measurements performed in liquid electrolytes are thus not always directly transferable to PEM fuel cells, where catalytic particles are in contact with a solid electrolyte. Discrepancies between the measurements performed with liquid and solid electrolytes may arise from (1) different utilization factors (higher utilization factors are usually expected in the former case), (2) different solubilities and diffusion coefficients, and (3) different electrode structures. Thus, to access the influence of carbon support porosity... [Pg.459]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Since the stereochemical course of a catalytic hydrogenation is dependent on several factors, " an understanding of the mechanism of the reaction can help in the selection of optimal reaction conditions more reliably than mere copying of a published recipe . In the first section the factors which can influence the product stereochemistry will be discussed from a mechanistic viewpoint. In subsequent sections the hydrogenation of various functional groups in the steroid ring system will be considered. In these sections both mechanistic and empirical correlations will be utilized with the primary emphasis being placed on selective and stereospecific reactions. [Pg.111]

Sheldon, R.A. (2000) Atom Utilization, E Factors and the Catalytic Solution. C.R. Acad. Sci. Paris, Serie, lie, Chimie/Chemistry, 3, 541-551. [Pg.318]

The valorization of by-products in biomass conversion is a key factor for introducing a biomass based energy and chemistry. There is the need to develop new (catalytic) solutions for the utilization of plant and biomass fractions that are residual after the production of bioethanol and other biofuels or production chains. Valorization, retreatment or disposal of co-products and wastes from a biorefinery is also an important consideration in the overall bioreftnery system, because, for example, the production of waste water will be much larger than in oil-based refineries. A typical oil-based refinery treats about 25 000 t d-1 and produces about 15 000 t d 1 of waste water. The relative amount of waste water may increase by a factor 10 or more, depending on the type of feed and production, in a biorefinery. Evidently, new solutions are needed, including improved catalytic methods to eliminate some of the toxic chemicals present in the waste water (e.g., phenols). [Pg.399]

The inner cavity of carbon nanotubes stimulated some research on utilization of the so-called confinement effect [33]. It was observed that catalyst particles selectively deposited inside or outside of the CNT host (Fig. 15.7) in some cases provide different catalytic properties. Explanations range from an electronic origin due to the partial sp3 character of basal plane carbon atoms, which results in a higher n-electron density on the outer than on the inner CNT surface (Fig. 15.4(b)) [34], to an increased pressure of the reactants in nanosized pores [35]. Exemplarily for inside CNT deposited catalyst particles, Bao et al. observed a superior performance of Rh/Mn/Li/Fe nanoparticles in the ethanol production from syngas [36], whereas the opposite trend was found for an Ru catalyst in ammonia decomposition [37]. Considering the substantial volume shrinkage and expansion, respectively, in these two reactions, such results may indeed indicate an increased pressure as the key factor for catalytic performance. However, the activity of a Ru catalyst deposited on the outside wall of CNTs is also more active in the synthesis of ammonia, which in this case is explained by electronic properties [34]. [Pg.400]

Metal complexes of bis(oxazoline) ligands are excellent catalysts for the enantioselective Diels-Alder reaction of cyclopentadiene and 3-acryloyl-l,3-oxa-zolidin-2-one. This reaction was most commonly utilized for initial investigation of the catalytic system. The selectivity in this reaction can be twofold. Approach of the dienophile (in this case, 3-acryloyl-l,3-oxazolidin-2-one) can be from the endo or exo face and the orientation of the oxazolidinone ring can lead to formation of either enantiomer R or S) on each face. The ideal catalyst would offer control over both of these factors leading to reaction at exclusively one face (endo or exo) and yielding exclusively one enantiomer. Corey and co-workers first experimented with the use of bis(oxazoline)-metal complexes as catalysts in the Diels-Alder reaction between cyclopentadiene 68 and 3-acryloyl-l,3-oxazolidin-2-one 69 the results are summarized in Table 9.7 (Fig. 9.20). For this reaction, 10 mol% of various iron(III)-phe-box 6 complexes were utilized at a reaction temperature of —50 °C for 2-15 h. The yields of cycloadducts were 85%. The best selectivities were observed when iron(III) chloride was used as the metal source and the reaction was stirred at —50 °C for 15 h. Under these conditions the facial selectivity was determined to be 99 1 (endo/exo) with an endo ee of 84%. [Pg.546]

According to the different exchange current densities, i0, for hydrogen oxidation and hydrogen evolution on Ni and Pt, the catalytic activity of platinum is by a factor of several hundred to a thousand higher than that of nickel. Therefore, if the utilization of Raney-nickel particles below 10 jum size approaches 100%, it is clear that Pt-activated porous soot particles must be by a factor of from 10 to 30 smaller than Raney-nickel particles to achieve full utilization, that is, vanishing fuel starvation of the catalyst. This happens to be the case with soot agglomerates that are by their very nature of correct size (dv < 0.1 /im) (150, 151). [Pg.139]

Electrocatalysis is, in the majority of cases, due to the chemical catalysis of the chemical steps in an electrochemical multi-electron reaction composed of a sequence of charge transfers and chemical reactions. Two factors determine the effective catalytic activity of a technical electrocatalysts its chemical nature, which decisively determines its absorptive and fundamental catalytic properties and its morphology, which determines mainly its utilization. A third issue of practical importance is long-term stability, for which catalytic properties and utilization must occasionally be sacrificed. [Pg.168]


See other pages where Catalytic utilization factor is mentioned: [Pg.256]    [Pg.457]    [Pg.457]    [Pg.462]    [Pg.469]    [Pg.186]    [Pg.191]    [Pg.110]    [Pg.141]    [Pg.2502]    [Pg.91]    [Pg.553]    [Pg.519]    [Pg.524]    [Pg.538]    [Pg.225]    [Pg.425]    [Pg.315]    [Pg.17]    [Pg.84]    [Pg.70]    [Pg.115]    [Pg.631]    [Pg.263]    [Pg.119]    [Pg.164]    [Pg.237]    [Pg.101]    [Pg.201]    [Pg.240]    [Pg.116]    [Pg.25]    [Pg.275]    [Pg.154]    [Pg.216]    [Pg.218]    [Pg.296]    [Pg.100]   
See also in sourсe #XX -- [ Pg.280 , Pg.284 ]




SEARCH



Utilization factor

© 2024 chempedia.info