Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic hydroformylation reaction catalysts

In 1996, consumption in the western world was 14.2 tonnes of rhodium and 3.8 tonnes of iridium. Unquestionably the main uses of rhodium (over 90%) are now catalytic, e.g. for the control of exhaust emissions in the car (automobile) industry and, in the form of phosphine complexes, in hydrogenation and hydroformylation reactions where it is frequently more efficient than the more commonly used cobalt catalysts. Iridium is used in the coating of anodes in chloralkali plant and as a catalyst in the production of acetic acid. It also finds small-scale applications in specialist hard alloys. [Pg.1115]

The catalytic hydroformylation of alkenes has been extensively studied. The selective formation of linear versus branched aldehydes is of capital relevance, and this selectivity is influenced by many factors such as the configuration of the ligands in the metallic catalysts, i.e., its bite angle, flexibility, and electronic properties [152,153]. A series of phosphinous amide ligands have been developed for influencing the direction of approach of the substrate to the active catalyst and, therefore, on the selectivity of the reaction. The use of Rh(I) catalysts bearing the ligands in Scheme 34, that is the phosphinous amides 37 (R ... [Pg.95]

Today, iridium compounds find so many varied applications in contemporary homogeneous catalysis it is difficult to recall that, until the late 1970s, rhodium was one of only two metals considered likely to serve as useful catalysts, at that time typically for hydrogenation or hydroformylation. Indeed, catalyst/solvent combinations such as [IrCl(PPh3)3]/MeOH, which were modeled directly on what was previously successful for rhodium, failed for iridium. Although iridium was still considered potentially to be useful, this was only for the demonstration of stoichiometric reactions related to proposed catalytic cycles. Iridium tends to form stronger metal-ligand bonds (e.g., Cp(CO)Rh-CO, 46 kcal mol-1 Cp(CO)Ir-CO, 57 kcal mol ), and consequently compounds which act as reactive intermediates for rhodium can sometimes be isolated in the case of iridium. [Pg.35]

The catalytic cycle for hydroformylation reactions has also been established for certain homogeneous catalysts. Scheme 8.4 illustrates that for HRh(CO)2(PPh3)2, although the cycle is the same for the analogous cobalt catalyst. [Pg.161]

If one would be able to derive from the experimental data an accurate rate equation like (12) the number of terms in the denominator gives us the number of reactions involved in forward and backward direction that should be included in the scheme of reactions, including the reagents involved. The use of analytical expressions is limited to schemes of only two reaction steps. In a catalytic sequence usually more than two reactions occur. We can represent the kinetics by an analytical expression only, if a series of fast pre-equilibria occurs (as in the hydroformylation reaction, Chapter 9, or as in the Wacker reaction, Chapter 15) or else if the rate determining step occurs after the resting state of the catalyst, either immediately, or as the second one as shown in Figure 3.1. In the examples above we have seen that often the rate equation takes a simpler form and does not even show all substrates participating in the reaction. [Pg.68]

The use of catalytic SILP materials has been reviewed recently [10] covering Friedel-Crafts reactions [33-37], hydroformylations (Rh-catalyzed) [38], hydrogenation (Rh-catalyzed) [39,40], Heck reactions (Pd-catalyzed) [41], and hydroaminations (Rh-, Pd-, and Zn-catalyzed) [42]. Since then, the SILP concept has been extended to additional catalytic reactions and alternative support materials. In this paper we will present results from continuous, fixed-bed carbonylation and hydroformylation reactions using rhodium-based SILP catalysts as reaction examples demonstrating the advantages of the SILP technology for bulk chemical production. [Pg.151]

Rh, are the base of active catalysts for CO hydrogenation and the hydroformylation of olefins. The presence of several promoters modifies their catalytic behavior and synergic effects on the base-metal have been observed Table 8.5 illustrates several examples in which homonuclear or heteronuclear carbonyl compounds have been used in the preparation of Co- or Co-Rh-based catalysts for the CO hydrogenation and/or hydroformylation reactions. [Pg.331]

Metal chemical shifts have not found extensive use in relation to structural problems in catalysis. This is partially due to the relatively poor sensitivity of many (but not all) spin 1=1/2 metals. The most interesting exception concerns Pt, which is 33.7% abundant and possesses a relatively large magnetic moment. Platinum chemistry often serves as a model for the catalytically more useful palladium. Additionally, Pt NMR, has been used in connection with the hydrosilyla-tion and hydroformylation reactions. In the former area, Roy and Taylor [82] have prepared the catalysts Pt(SiCl2Me)2(l,5-COD) and [Pt()i-Cl)(SiCl2Me)(q -l,5-COD)]2 and used Pt methods (plus Si and NMR) to characterize these and related compounds. These represent the first stable alkene platinum silyl complexes and their reactions are thought to support the often-cited Chalk-Harrod hydrosilylation mechanism. [Pg.20]

Garland et al. have developed a powerful method for the reconstruction of individual pure component spectra from complex catalytic mixtures [20]. Using this band-target entropy minimization (BTEM) protocol, he was able to identify the mononuclear rhodium acyl intermediate in the hydroformylation reaction of 3,3-dimethylbut-l-ene starting from Rh4(a-CO)9(p-CO)3 as catalyst precursor [21]. In addition to the catalyst precursor and the more stable decomposition product... [Pg.237]

The OATS concept was tested on the catalytic hydroformylation of 1-octene, a hydrophobic substrate. This reaction was selected because it has previously been shown to be inactive for traditional aqueous biphasic systems (18). The catalyst used was a Rh/TPPTS complex, an industrial water soluble catalyst (22). The application of the OATS concept increased catalytic efficiency by a factor of 65 (TOP increased from 5 h for biphasic to 325 h for monophasic). [Pg.400]

The investigation of phosphine complexes of rhodium(I) as catalysts (or catalyst precursors) for the hydroformylation reaction continues both to better elucidate the reaction mechanism and to improve catalyst activity. The presence of dioxygen often decreases the catalytic activity (139), but can also, surprisingly, reactivate hydroformylation catalysts... [Pg.300]

Although the overall reaction mechanisms (catalytic cycles) written for hydroformylation reactions with an unmodified cobalt catalyst (Scheme 1) and the rhodium catalyst (Scheme 2) serve as working models for the reaction, the details of many of the steps are missing and there are many aspects of the reaction that are not well understood. [Pg.915]


See other pages where Catalytic hydroformylation reaction catalysts is mentioned: [Pg.283]    [Pg.234]    [Pg.237]    [Pg.284]    [Pg.250]    [Pg.162]    [Pg.294]    [Pg.464]    [Pg.74]    [Pg.151]    [Pg.154]    [Pg.155]    [Pg.159]    [Pg.51]    [Pg.57]    [Pg.152]    [Pg.413]    [Pg.384]    [Pg.49]    [Pg.69]    [Pg.145]    [Pg.162]    [Pg.138]    [Pg.65]    [Pg.333]    [Pg.339]    [Pg.124]    [Pg.356]    [Pg.187]    [Pg.231]    [Pg.239]    [Pg.92]    [Pg.237]    [Pg.467]    [Pg.116]    [Pg.137]    [Pg.264]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Catalytic catalyst

Catalytic hydroformylation

Hydroformylation reaction

© 2024 chempedia.info