Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic cracking catalyst replacement

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Catalysts were expensive, however, so the petroleum industry did not solve the problem of cheap, lead-free, knock-free gasoline until the 1970s, after General Motors adopted the catalytic converter. Lead compounds inactivate the catalysts, and sophisticated catalytic cracking techniques had to be developed to replace the fuel additive. Ironically, an even more difficult job was finding a substitute for the protective coating that tetraethyl lead formed on exhaust valve seats not even newly developed, extremely hard materials prevent wear and tear on them as well as tetraethyl lead did. [Pg.95]

Catalytic cracking is a process that is currently performed exclusively over fluidized catalyst beds. The fluid catalytic cracking (FCC) process was introduced in 1942 and at that time replaced the conventional moving bed processes. These early processes were based on acid-treated clays as acidic catalysts. The replacement of the amorphous aluminosilicate catalysts by Faujasite-type zeolites in the early-1960s is regarded as a major improvement in FCC performance. The new acidic catalysts had a remarkable activity and produced substantially higher yields than the old ones. [Pg.110]

In 1962 Mobil Oil introduced the use of synthetic zeolite X as a hydrocarbon cracking catalyst In 1969 Grace described the first modification chemistry based on steaming zeolite Y to form an ultrastable Y. In 1967-1969 Mobil Oil reported the synthesis of the high silica zeolites beta and ZSM-5. In 1974 Henkel introduced zeolite A in detergents as a replacement for the environmentally suspect phosphates. By 2008 industry-wide approximately 367 0001 of zeolite Y were in use in catalytic cracking [22]. In 1977 Union Carbide introduced zeolites for ion-exchange separations. [Pg.4]

Fluidized catalytic processes, in which the finely powdered catalyst is handled as a fluid, have largely replaced the fixed-bed and moving-bed processes, which use a beaded or pelleted catalyst. A schematic flow diagram of fluid catalytic cracking (FCC) is shown in Fig. 4. [Pg.244]

The revolutionary zeolite cracking catalyst (synthetic Linde X and Y) was introduced commercially over 28 years ago, but considerable effort is still being expended on the improvement of its stability and catalytic properties. Decreasing the aluminum content of the zeolite framework and the replacing the rare-earth with the hydrogen form have greatly increased activity at the expense of stability. The thermal stability of the faujasites is fairly well understood, while the reasons for the increased catalytic activitity are still not fully known. [Pg.32]

Fluid catalytic cracking (FCC) (Fig. 13.5) was first introduced in 1942 and uses a fluidized bed of catalyst with continuous feedstock flow. The catalyst is usually a synthetic alumina or zeolite used as a catalyst. Compared to thermal cracking, the catalytic cracking process (1) uses a lower temperature, (2) uses a lower pressure, (3) is more flexible, (4) and the reaction mechanism is controlled by the catalysts. Feedstocks for catalytic cracking include straight-run gas oil, vacuum gas oil, atmospheric residuum, deasphalted oil, and vacuum residuum. Coke inevitably builds up on the catalyst over time and the issue can be circumvented by continuous replacement of the catalyst or the feedstock pretreated before it is used by deasphalting (removes coke precursors), demetallation (removes nickel and vanadium and prevents catalyst deactivation), or by feedstock hydrotreating (that also prevents excessive coke formation). [Pg.483]

Acid-treated clay minerals were employed as cracking catalysts in the first commercial process, the Houdry process, widely used in the early petroleum industries to produce high-octane gasoline. The Houdry process catalysts had been discussed extensively by many investigators (2) but were eventually completely replaced by synthetic silica-alumina or zeolite catalysts. Recently, the need for new catalytic materials has revived special interest in the layer lattice silicates because of their ion-exchange properties and their expandable layer structures. [Pg.303]


See other pages where Catalytic cracking catalyst replacement is mentioned: [Pg.72]    [Pg.205]    [Pg.367]    [Pg.197]    [Pg.88]    [Pg.92]    [Pg.13]    [Pg.69]    [Pg.93]    [Pg.102]    [Pg.54]    [Pg.104]    [Pg.569]    [Pg.12]    [Pg.57]    [Pg.16]    [Pg.377]    [Pg.47]    [Pg.97]    [Pg.8]    [Pg.281]    [Pg.64]    [Pg.201]    [Pg.31]    [Pg.367]    [Pg.448]    [Pg.168]    [Pg.27]    [Pg.12]    [Pg.63]    [Pg.310]    [Pg.195]    [Pg.425]    [Pg.481]    [Pg.208]    [Pg.317]    [Pg.593]    [Pg.100]    [Pg.1880]    [Pg.2117]    [Pg.135]    [Pg.137]   
See also in sourсe #XX -- [ Pg.177 , Pg.201 ]




SEARCH



Catalyst replacement

Catalytic catalyst

Cracking catalyst

© 2024 chempedia.info