Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts nitrogen oxide reducing

PGM catalyst technology can also be appHed to the control of emissions from stationary internal combustion engines and gas turbines. Catalysts have been designed to treat carbon monoxide, unbumed hydrocarbons, and nitrogen oxides in the exhaust, which arise as a result of incomplete combustion. To reduce or prevent the formation of NO in the first place, catalytic combustion technology based on platinum or palladium has been developed, which is particularly suitable for appHcation in gas turbines. Environmental legislation enacted in many parts of the world has promoted, and is expected to continue to promote, the use of PGMs in these appHcations. [Pg.173]

Automotive Catalytic Converter Catalysts. California environmental legislation in the early 1960s stimulated the development of automobile engines with reduced emissions by the mid-1960s, led to enactment of the Federal Clean Air Act of 1970, and resulted in a new industry, the design and manufacture of the automotive catalytic converter (50). Between 1974 and 1989, exhaust hydrocarbons were reduced by 87% and nitrogen oxides by 24%. [Pg.198]

In principle, the catalytic converter is a fixed-bed reactor operating at 500—620°C to which is fed 200—3500 Hters per minute of auto engine exhaust containing relatively low concentrations of hydrocarbons, carbon monoxide, and nitrogen oxides that must be reduced significantly. Because the auto emission catalyst must operate in an environment with profound diffusion or mass-transfer limitations (51), it is apparent that only a small fraction of the catalyst s surface area can be used and that a system with the highest possible surface area is required. [Pg.198]

Using 2eohte catalysts, the NO reduction takes place inside a molecular sieve ceramic body rather than on the surface of a metallic catalyst (see Molecularsieves). This difference is reported to reduce the effect of particulates, soot, SO2/SO2 conversions, heavy metals, etc, which poison, plug, and mask metal catalysts. ZeoHtes have been in use in Europe since the mid-1980s and there are approximately 100 installations on stream. Process applications range from use of natural gas to coal as fuel. Typically, nitrogen oxide levels are reduced 80 to 90% (37). [Pg.511]

The device for nitrogen oxides based on chemiluminescence measures the nitrogen monoxide concentration. The same equipment can be used to measure the concentration of nitrogen dioxide. Nitrogen dioxide is reduced to nitrogen monoxide in a converter by a molybdenum catalyst. In order to... [Pg.1301]

To reduce nitrogen oxide, thermal and catalytic processes are available. The thermal process is licensed by Exxon. NHj or urea is injected into the flue gas at an elevated temperature ( 1600°F, 870°C) NOj is reduced to nitrogen. This process is applicable to FCC units that have CO boilers. NO can also be reduced over a catalyst at 500°F to 750°F (260°C to 400°C). [Pg.332]

Compliance with the EuroIII standards (2000) forced the fitting of Diesel oxidation catalysts (DOC) in the exhaust line [for the after-treatment of unburnt hydrocarbons (HC) and carbon monoxide (CO)]. Additionally, the exhaust gas recirculation (EGR) was adapted to reduce the engine-out emissions of nitrogen oxides (NOx). [Pg.211]

For reasons of safety and toxicity, urea is the preferred selective reducing agent for mobile SCR applications. Under the hydrothermal conditions in the exhaust system, urea decomposes to ammonia which reduces the nitrogen oxides on the surface of the SCR catalyst [18,19], If urea is used instead of ammonia, the DeNO chemistry involves isocyanic acid as an important intermediate which will lead to a complication of the SCR chemistry [20],... [Pg.262]

Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase). Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase).
DeNOx (1) A Denox process for removing nitrogen oxides from the gaseous effluents from nitric acid plants. The oxides are reduced with ammonia, over a catalyst containing potassium chromate and ferric oxide. Developed by Didier Werke in the 1980s. [Pg.83]

Houdry s solution to the problem was the first catalytic converter ever designed for an automotive vehicle. The catalytic converters found on almost all cars and trucks in use today are still strikingly similar to his invention. Exhaust gases passed into the converter and over a bed of platinum catalyst, then exited with a greatly reduced concentration of carbon monoxide, nitrogen oxides, and unburned hydrocarbons. Houdry obtained a patent for his device in 1956 and founded a company, Oxy-Catalyst, to manufacture and sell the new product. [Pg.31]

Since nitric acid, especially red fuming nitric acid RFNA which contains a small amount of nitrogen oxides, reacts vigorously with aromatic amines, during World War II the Germans employed solutions of these amines (e.g. aniline or phenylenediamine) in benzene or xylene as the combustible component. They added a small amount of ferric chloride as a reaction catalyst to the nitric acid. It was also shown that the addition of vinyl ethers to amine solutions reduces the induction period. [Pg.292]

Zeolites may be used in purely inorganic catalysis, however. One reaction that may be used to reduce air pollution from mixed nitrogen oxides, NO, in the industrial production or nitric acid is catalytic reduction by ammonia over zeolitic catalysts ... [Pg.552]


See other pages where Catalysts nitrogen oxide reducing is mentioned: [Pg.444]    [Pg.445]    [Pg.547]    [Pg.43]    [Pg.43]    [Pg.476]    [Pg.172]    [Pg.214]    [Pg.512]    [Pg.59]    [Pg.687]    [Pg.377]    [Pg.7]    [Pg.177]    [Pg.261]    [Pg.263]    [Pg.279]    [Pg.403]    [Pg.463]    [Pg.138]    [Pg.179]    [Pg.83]    [Pg.246]    [Pg.13]    [Pg.1175]    [Pg.319]    [Pg.76]    [Pg.239]    [Pg.60]    [Pg.146]    [Pg.25]    [Pg.359]    [Pg.552]    [Pg.172]    [Pg.784]    [Pg.547]   
See also in sourсe #XX -- [ Pg.445 ]




SEARCH



Nitrogen catalysts

Reduced oxide catalysts

Reducible oxide

© 2024 chempedia.info