Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst modifier, diethyl tartrate

Uemura et al. [49] found that (R)-1,1 -binaphthol could replace (7 ,7 )-diethyl tartrate in the water-modified catalyst, giving good results (up to 73% ee) in the oxidation of methyl p-tolyl sulfoxide with f-BuOOH (at -20°C in toluene). The chemical yield was close to 90% with the use of a catalytic amount (10 mol %) of the titanium complex (Ti(0-i-Pr)4/(/ )-binaphthol/H20 = 1 2 20). They studied the effect of added water and found that high enantioselectivity was obtained when using 0.5-3.0 equivalents of water with respect to the sulfide. In the absence of water, enantioselectivity was very low. The beneficial effect of water is clearly established here, but the amount of water needed is much higher than that in the case of the catalyst with diethyl tartrate. They assumed that a mononuclear titanium complex with two binaphthol ligands was involved, in which water affects the structure of the titanium complex and its rate of formation. [Pg.336]

Kagan and Pitchen ° and Modena and coworkers independently reported the oxidation of sulfides to sulfoxides using modified Sharpless epoxidation catalyst (titanium/diethyl tartrate). By 1987, Kagan had already reported a catalytic variation of the reaction and an improved catalytic system allows for the use of lower (10 mol%) loading of catalyst. For example, sulfide (5.143) undergoes sulfoxidation with good enantioselectivity. An alternative catalyst based on Ti(0 Pr)4 and BINOL is also effective for sulfoxidation, providing up to 96% ee. ... [Pg.140]

An alternative method for the epoxidation of enones was developed by Jackson and coworkers in 1997 , who utilized metal peroxides that are modified by chiral ligands such as diethyl tartrate (DET), (5,5)-diphenylethanediol, (—)-ephedrine, ( )-N-methylephedrine and various simple chiral alcohols. The best results were achieved with DET as chiral inductor in toluene. In the stoichiometric version, DET and lithium tert-butyl peroxide, which was generated in situ from TBHP and n-butyllithium, were used as catalyst for the epoxidation of enones. Use of 1.1 equivalent of (-l-)-DET in toluene as solvent afforded (2/f,35 )-chalcone epoxide in 71-75% yield and 62% ee. In the substo-ichiometric method n-butyllithium was replaced by dibutylmagnesium. With this system (10 mol% Bu2Mg and 11 mol% DET), a variety of chalcone-type enones could be oxidized in moderate to good yields (36-61%) and high asymmetric induction (81-94%), giving exactly the other enantiomeric epoxide than obtained with the stoichiometric system (equation 37). [Pg.391]

The Sharpless reagent, i.e. Ti(OPr-i)4/TBHP/diethyl tartrate, has been tested in the asymmetric BV oxidation of mono and bicyclic butanones . Conversions are low in all cases and ee values range from moderate to good. The best result has been obtained with the most bulky bicyclic ketone of the series, oxidized to the corresponding lactone with ee values up to 75%, using (+)-diethyl tartrate as ligand (equation 79). The use of a modified Sharpless reagent, based on Ti-TADDOL catalyst , increased the reaction rates, but decreased the enantiomeric excesses . ... [Pg.1113]

The oxidation of sulfides to sulfoxides by TBHP in the presence of Mo and V catalysts has been extensively studied.230,256 A modified Sharpless reagent,243 i.e. Ti(OPr )4/2 diethyl tartrate/1 H20, was used for the asymmetric oxidation of prochiral sulfides to sulfoxides with enantiomeric excess greater than 90% (equation 82).160,257... [Pg.346]

A modified Sharpless reagent has been developed by Kagan [503, 814], Modena [502, 814] and their coworkers. This new catalyst is formed by mixing water, Ti(0/-Pr)4, and diethyltartrate in a ratio of 1/1/2. The modified catalyst promotes enantioselecfrve oxidation of arylalkylsulfides by fert-BuOOH, and chiral sulfoxides are produced with excellent enantiomeric excesses (> 90%). Lower selectivities are observed from dialkylsulfides. From (R,R) or (5 S)-diethyl tartrate, either sulfoxide enantiomer can be obtained. The use of cumene hydroperoxide as the oxidant may improve the enantioselectivity. Uemura and coworkers obtained similar results by replacing the tartrates in these complexes with binaph-thols [815],... [Pg.124]

An enantioselective version of the reaction described in Protocol 4 has been recently investigated. The asymmetric oxidation of the sulfur centre was performed with the Kagan s modified Sharpless system [1.3 equiv of cumene hydroperoxide in the presence of a Ti(OPr )4/diethyl tartrate/H20 catalyst] and afforded the corresponding sulfinyl-substituted complexes with high enantiomeric purity (Scheme 6.8). [Pg.185]


See other pages where Catalyst modifier, diethyl tartrate is mentioned: [Pg.254]    [Pg.336]    [Pg.73]    [Pg.73]    [Pg.46]    [Pg.27]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Catalyst modified

Catalyst modifiers

Catalysts diethyl tartrate

Diethyl tartrate

Tartrate

© 2024 chempedia.info