Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters, acetoacetic alkylation

Section 21 7 The malonic ester synthesis is related to the acetoacetic ester synthesis Alkyl halides (RX) are converted to carboxylic acids of the type RCH2COOH by reaction with the enolate ion derived from diethyl mal onate followed by saponification and decarboxylation... [Pg.907]

The alkylation of activated halogen compounds is one of several reactions of trialkylboranes developed by Brown (see also 15-16,15-25,18-31-18-40, etc.). These compounds are extremely versatile and can be used for the preparation of many types of compounds. In this reaction, for example, an alkene (through the BR3 prepared from it) can be coupled to a ketone, a nitrile, a carboxylic ester, or a sulfonyl derivative. Note that this is still another indirect way to alkylate a ketone (see 10-105) or a carboxylic acid (see 10-106), and provides an additional alternative to the malonic ester and acetoacetic ester syntheses (10-104). [Pg.560]

Just as the malonic ester synthesis converts an alkyl halide into a carboxylic acid, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone having three more carbons. [Pg.859]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

Examples of this approach to the synthesis of ketones and carboxylic acids are presented in Scheme 1.4. In these procedures, an ester group is removed by hydrolysis and decarboxylation after the alkylation step. The malonate and acetoacetate carbanions are the synthetic equivalents of the simpler carbanions that lack the additional ester substituent. [Pg.23]

Examples of this approach to the synthesis of ketones and carboxylic acids are presented in Scheme 1.6. In these procedures, an ester group is removed by hydrolysis and decarboxylation after the alkylation step. The malonate and acetoacetate carbanions are the synthetic equivalents of the simpler carbanions lacking the ester substituents. In the preparation of 2-heptanone (entries 1, Schemes 1.5 and 1.6), for example, ethyl acetoacetate functions as the synthetic equivalent of acetone. It is also possible to use the dilithium derivative of acetoacetic acid as the synthetic equivalent of acetone enolate.29 In this case, the hydrolysis step is unnecessary, and decarboxylation can be done directly on the alkylation product. [Pg.13]

The extra ester group is not normally added to the preformed ketone as ethyl acetoacetate 41 is available and the diester is available diethyl malonate 59. If it is necessary to make the 1,3-dicarbonyl compound, this can be done by methods described in chapters 19 and 20. The carboxylic acid 56 can be disconnected at the branchpoint to an alkyl halide and the synthon 58 that could be realised as the anion of diethyl malonate 59 or the lithium enolate of ethyl acetate. [Pg.98]

In the malonic ester synthesis this enolate ion is alkylated in the same manner as in the acetoacetic ester synthesis. Saponification of the alkylated diester produces a diacid. The carbonyl group of either of the acid groups is at the /3-position relative to the other acid group. Therefore, when the diacid is heated, carbon dioxide is lost in the same manner as in the acetoacetic ester synthesis. The difference is that the product is a carboxylic acid in the malonic ester synthesis rather than the methyl ketone that is produced in the acetoacetic ester synthesis. The loss of carbon dioxide from a substituted malonic acid to produce a monoacid is illustrated in the following equation ... [Pg.869]

Although the acetoacetic ester synthesis and the malonic ester synthesis are used to prepare ketones and carboxylic acids, the same alkylation, without the hydrolysis and decarboxylation steps, can be employed to prepare substituted /3-ketoesters and /3-diesters. In fact, any compound with two anion stabilizing groups on the same carbon can be deprotonated and then alkylated by the same general procedure. Several examples are shown in the following equations. The first example shows the alkylation of a /3-ketoester. Close examination shows the similarity of the starting material to ethyl acetoacetate. Although sodium hydride is used as a base in this example, sodium ethoxide could also be employed. [Pg.870]

Decide which synthesis to use. The acetoacetic ester synthesis is used to prepare methyl ketones, and the malonic ester synthesis is used to prepare carboxylic acids. Both syntheses provide a method to add alkyl groups to the a-carbon. Therefore, next identify the group or groups that must be added to the a-carbon. Remember that the a-carbon is the nucleophile, so the groups to be attached must be the electrophile in the Sn2 reaction they must have a leaving group bonded to the carbon to which the new bond is to be formed. [Pg.871]

The butylated /3-ketoester C of Figure 10.23 is not the final synthetic target of the acetoacetic ester synthesis of methyl ketones. In that context the /3-ketoester C is converted into the corresponding /3-ketocarboxylic add via add-catalyzed hydrolysis (Figure 10.24 for the mechanism, see Figure 6.19). This /3-ketocarboxylic acid is then heated either in the same pot or after isolation to effect decarboxylation. The /3-ketocarboxylic add de-carboxylates via a cyclic six-membered transition state in which three valence electron pairs are shifted at the same time. The reaction product is an enol, which isomerizes immediately to a ketone in general and to phenyl methyl ketone in the specific example shown. In general, alkyl methyl ketones are obtained by such acetoacetic ester syntheses. [Pg.392]

An alternative method for the introduction of the carboxyl group by the acetoacetic ester synthesis involves alkylation by a bromo ester followed... [Pg.220]

Ethyl cyanoacetate is readily alkylated under the usual conditions employed for the malonic and acetoacetic ester syntheses (methods 299 and 213) to yield mono- and di-substituted cyano acetates. These substances may then be hydrolyzed and decarboxylated to furnish mono-carboxylic acids (method 265). In many instances, it is difficult to avoid the formation of the dialkylated ester, the yields may be low. Sev-... [Pg.305]

Similarly, the a-methylene group of acetoacetic ester is oximinated by the action of sodium nitrite in glacial acetic acid (63%). Nitrosation of alkylated malonic, acetoacetic, and benzoyl acetic esters with subsequent cleavage affords an excellent synthesis for a-oximino esters, RC(=-NOH)COjC2Hj. A survey of several possible procedures for this conversion has been made." If a /3-keto acid is nitrosated, then the Carboxyl group is lost and an a-oximino ketone is formed, viz.,... [Pg.375]

Decarboxylation may also be required in cases other than those involving derivatives of acetoacetic or malonic esters. The usefulness of this operation stems from the tremendous synthetic potential of carboxylic acids and their derivatives as substrates employed in C-C bond-forming reactions such as a-alkylation, Michael addition, the Diels-Alder reaction, etc. As the immediate result of these reactions, acid derivatives containing diverse structural backbones are formed. Hence the scope of these methods in synthetic practice depends heavily upon the opportunity to remove the carboxyl group after it has... [Pg.204]

When treated with concentrated alkali, acetoacetic ester is converted into two moles of sodium acetate, (a) Outline all steps in a likely mechanism for this reaction. (Hint See Sec. 21.11 and Problem 5.8, p. 170.) (b) Substituted acetoacetic esters also undergo this reaction. Outline the steps in a general synthetic route from acetoacetic ester to carboxylic acids, (c) Outline the steps in the synthesis of 2-hexanone via acetoacetic ester. What acids will be formed as by-products Outline a procedure for purification of the desired ketone. (Remember that the alkylation is carried out in alcohol that NaBr is formed that aqueous base is used for hydrolysis and that ethyl alcohol is a product of the hydrolysis.)... [Pg.862]

The only difference between the acetoacetic ester synthesis and the malonic ester synthesis is the use of acetoacetic ester rather than malonic ester as the starting material. The difference in starting material causes the product of the acetoacetic ester synthesis to be a methyl ketone rather than a carboxylic acid. The carbonyl group of the methyl ketone and the carbon atoms on either side of it come from acetoacetic ester, and the rest of the ketone comes from the alkyl halide used in the second step of the reaction. [Pg.822]

Protection as an ester overcomes this problem, but the resulting ester enolate is not particularly stable and its reactions can be low yielding. Addition of a second ester to the alpha carbon serves as an activating group and allows the formation of a stabilized enolate. As seen with the acetoacetic ester synthesis, this ester group can be eventually removed by a decarboxylation reaction. The malonic ester synthesis starts with commercially available diethyl malonate. Deprotonation, alkylation of the resulting enolate with an alkyl haUde, and hydrolysis followed by decarboxylation furnishes a carboxylic acid product. [Pg.118]


See other pages where Carboxylic esters, acetoacetic alkylation is mentioned: [Pg.347]    [Pg.336]    [Pg.624]    [Pg.35]    [Pg.1188]    [Pg.200]    [Pg.925]    [Pg.220]    [Pg.830]    [Pg.101]    [Pg.2188]    [Pg.163]    [Pg.931]    [Pg.963]   
See also in sourсe #XX -- [ Pg.626 ]




SEARCH



Acetoacetate ester

Acetoacetates esters

Acetoacetic ester acetoacetate

Acetoacetic ester, alkylation

Acetoacetic ester—

Alkyl 4 -acetoacetate

Alkyl carboxylate

Alkyl carboxylates

Alkyl esters

Carboxylate alkylation

Carboxylates alkylation

Carboxylic esters alkylation

Carboxylic esters, acetoacetic

Esters acetoacetic ester

Esters alkylation

© 2024 chempedia.info