Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic deprotonated

C-NMR relaxation measurements in solution of pH 8.6 suggested the participation of carboxylate, deprotonated amide and deprotonated alcoholic OH groups in the chelate ring of the copper(ll) complex formed in the physiological pH range. [Pg.214]

An alternative mechanism has the carboxylate deprotonate the alcohol, which then attacks the phosphoniohydrazine to displace N from P. Although this scheme is more direct, it violates the pKa rule (pka alcohol = 17, pA), of carboxylate 5). [Pg.95]

In the second part of the mechanism, the carboxylate deprotonates the alcohol, which then displaces N from P in 8 2 fashion, giving an oxyphosphonium salt and converting the alcohol C into a much better electrophile. [Pg.89]

The "zip-reaction (U. Kramer, 1978, 1979) leads to giant macrocycles. Potassium 3- ami-nopropyl)amide = KAPA ( superbase ) in 1,3-diaminopropane is used to deprotonate amines. The amide anions are highly nucleophilic and may, for example, be used to transam-idate carboxylic amides. If N- 39-atnino-4,8,12,16,20,24,28,32,36-nonaazanonatriacontyl)do-decanolactam is treated with KAPA, the amino groups may be deprotonated and react with the macrocyclic lactam. The most probable reaction is the intramolecular formation of the six-membered ring intermediate indicated below. This intermediate opens spontaneously to produce the azalactam with seventeen atoms in the cycle. This reaction is repeated nine times in the presence of excess KAPA, and the 53-membered macrocycle is formed in reasonable yield. [Pg.249]

Section 19 5 Although carboxylic acids dissociate to only a small extent in water they are deprotonated almost completely m basic solution... [Pg.822]

Once formed the tetrahedral intermediate can revert to starting materials by merely reversing the reactions that formed it or it can continue onward to products In the sec ond stage of ester hydrolysis the tetrahedral intermediate dissociates to an alcohol and a carboxylic acid In step 4 of Figure 20 4 protonation of the tetrahedral intermediate at Its alkoxy oxygen gives a new oxonium ion which loses a molecule of alcohol m step 5 Along with the alcohol the protonated form of the carboxylic acid arises by dissocia tion of the tetrahedral intermediate Its deprotonation m step 6 completes the process... [Pg.851]

In base the carboxylic acid is deprotonated giving a carboxylate ion... [Pg.863]

Section 20 11 Ester hydrolysis m basic solution is called saponification and proceeds through the same tetrahedral intermediate (Figure 20 5) as m acid catalyzed hydrolysis Unlike acid catalyzed hydrolysis saponification is irreversible because the carboxylic acid is deprotonated under the reac tion conditions... [Pg.876]

In addition to providing fully alkyl/aryl-substituted polyphosphasenes, the versatility of the process in Figure 2 has allowed the preparation of various functionalized polymers and copolymers. Thus the monomer (10) can be derivatized via deprotonation—substitution, when a P-methyl (or P—CH2—) group is present, to provide new phosphoranimines some of which, in turn, serve as precursors to new polymers (64). In the same vein, polymers containing a P—CH group, for example, poly(methylphenylphosphazene), can also be derivatized by deprotonation—substitution reactions without chain scission. This has produced a number of functionalized polymers (64,71—73), including water-soluble carboxylate salts (11), as well as graft copolymers with styrene (74) and with dimethylsiloxane (12) (75). [Pg.259]

Work in the mid-1970s demonstrated that the vitamin K-dependent step in prothrombin synthesis was the conversion of glutamyl residues to y-carboxyglutamyl residues. Subsequent studies more cleady defined the role of vitamin K in this conversion and have led to the current theory that the vitamin K-dependent carboxylation reaction is essentially a two-step process which first involves generation of a carbanion at the y-position of the glutamyl (Gla) residue. This event is coupled with the epoxidation of the reduced form of vitamin K and in a subsequent step, the carbanion is carboxylated (77—80). Studies have provided thermochemical confirmation for the mechanism of vitamin K and have shown the oxidation of vitamin KH2 (15) can produce a base of sufficient strength to deprotonate the y-position of the glutamate (81—83). [Pg.156]

Fig. 10. Pharmacophores for angiotension-converting enzyme. Distances in nm. (a) The stmcture of a semirigid inhibitor and distances between essential atoms from which one pharmacophore was derived (79). (b) In another pharmacophore, atom 1 is a potential zinc ligand (sulfhydryl or carboxylate oxygen), atom 2 is a neutral hydrogen bond acceptor, atom 3 is an anion (deprotonated sulfur or charged oxygen), atom 4 indicates the direction of a hydrogen bond to atom two, and atom 5 is the central atom of a carboxylate, sulfate, or phosphate of which atom 3 is an oxygen, or atom 5 is an unsaturated carbon when atom 3 is a deprotonated sulfur. The angle 1- -2- -3- -4 is —135 to —180° or 135 to 180°, and 1- -2- -3- -5 is —90 to 90°. Fig. 10. Pharmacophores for angiotension-converting enzyme. Distances in nm. (a) The stmcture of a semirigid inhibitor and distances between essential atoms from which one pharmacophore was derived (79). (b) In another pharmacophore, atom 1 is a potential zinc ligand (sulfhydryl or carboxylate oxygen), atom 2 is a neutral hydrogen bond acceptor, atom 3 is an anion (deprotonated sulfur or charged oxygen), atom 4 indicates the direction of a hydrogen bond to atom two, and atom 5 is the central atom of a carboxylate, sulfate, or phosphate of which atom 3 is an oxygen, or atom 5 is an unsaturated carbon when atom 3 is a deprotonated sulfur. The angle 1- -2- -3- -4 is —135 to —180° or 135 to 180°, and 1- -2- -3- -5 is —90 to 90°.
The dianions derived from furan- and thiophene-carboxylic acids by deprotonation with LDA have been reacted with various electrophiles (Scheme 64). The oxygen dianions reacted efficiently with aldehydes and ketones but not so efficiently with alkyl halides or epoxides. The sulfur dianions reacted with allyl bromide, a reaction which failed in the case of the dianions derived from furancarboxylic acids, and are therefore judged to be the softer nucleophiles (81JCS(Pl)1125,80TL505l). [Pg.72]

Unsubstituted 3-alkyl- or 3-aryl-isoxazoles undergo ring cleavage reactions under more vigorous conditions. In these substrates the deprotonation of the H-5 proton is concurrent with fission of the N—O and C(3)—-C(4) bonds, giving a nitrile and an ethynolate anion. The latter is usually hydrolyzed on work-up to a carboxylic acid, but can be trapped at low temperature. As shown by Scheme 33, such reactions could provide useful syntheses of ketenes and /3-lactones (79LA219). [Pg.30]

If there is no phenyl substituent in the 3-position the amination ability decreases. The acyloxaziridine (104) yields only 11% of a semicarbazide derivative with piperidine. In the presence of strong bases an intramolecular amination competes. Compound (104) reacts with methoxide within a couple of seconds to give phenylhydrazine carboxylic ester (106), and with cyclohexylamine to give the substituted semicarbazide (107). A diaziridinone (105) is assumed to be the common intermediate, formed by an intramolecular reaction from deprotonated (104) (67CB2600). [Pg.210]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

The acid-base reactions that occur after the amide bond is broken make the overall hydrolysis ineversible in both cases. The amine product is protonated in acid the carboxylic acid is deprotonated in base. [Pg.863]

For the Flofmann rearrangement reaction, a carboxylic amide 1 is treated with hypobromite in aqueous alkaline solution. Initially an iV-bromoamide 4 is formed. With two electron-withdrawing substituents at nitrogen the A -bromoamide shows NFI-acidity, and can be deprotonated by hydroxide to give the anionic species 5. [Pg.166]

The reaction mechanism involves deprotonation of the carboxylic anhydride 2 to give anion 4, which then adds to aldehyde 1. If the anhydride used bears two a-hydrogens, a dehydration takes place already during workup a /3-hydroxy carboxylic acid will then not be isolated as product ... [Pg.225]

Lster hydrolysis occurs through a typical nucleophilic acyl substitution pathway in which hydroxide ion is the nucleophile that adds to the ester carbonyl group to give a tetrahedral intermediate. Loss of alkoxide ion then gives a carboxylic acid, which is deprotonated to give the carboxylate ion. Addition of aqueous HC1 in a separate step after the saponification is complete then pro-tonates the carboxylate ion and gives the carboxylic acid (Figure 21.17). [Pg.809]

Basic hydrolysis occurs by nucleophilic addition of OH- to the amide carbonyl group, followed by elimination of amide ion (-NH2) and subsequent deprotonation of the initially formed carboxylic acid by amide ion. The steps are reversible, with the equilibrium shifted toward product by the final deprotonation of the carboxylic acid. Basic hydrolysis is substantially more difficult than the analogous acid-catalyzed reaction because amide ion is a very poor leaving group, making the elimination step difficult. [Pg.815]

We saw in Sections 20.3 and 24.5 that a carboxyl group is deprotonated and exists as the carboxylate anion at a physiological pH of 7.3, while an amino group is protonated and exists as the ammonium cation. Thus, amino acids exist in aqueous solution primarily in the form of a dipolar ion, or zwitterion (German zwitter, meaning "hybrid"). [Pg.1017]

The 20 common amino acids can be further classified as neutral, acidic, or basic, depending on the structure of their side chains. Fifteen of the twenty have neutral side chains, two (aspartic acid and glutamic acid) have an extra carboxylic acid function in their side chains, and three (lysine, arginine, and histidine) have basic amino groups in their side chains. Note that both cysteine (a thiol) and tyrosine (a phenol), although usually classified as neutral amino acids, nevertheless have weakly acidic side chains that can be deprotonated in strongly basic solution. [Pg.1021]

Q The enzyme active site contains an aspartic acid, a histidine, and a serine. First, histidine acts as a base to deprotonate the -OH group of serine, with the negatively charged carboxylate of aspartic acid stabilizing the nearby histidine cation that results. Serine then adds to the carbonyl group of the triacylglycerol, yielding a tetrahedral intermediate. [Pg.1131]


See other pages where Carboxylic deprotonated is mentioned: [Pg.138]    [Pg.1486]    [Pg.127]    [Pg.186]    [Pg.138]    [Pg.1486]    [Pg.127]    [Pg.186]    [Pg.181]    [Pg.851]    [Pg.1117]    [Pg.1119]    [Pg.452]    [Pg.452]    [Pg.31]    [Pg.495]    [Pg.1117]    [Pg.1119]    [Pg.517]    [Pg.520]    [Pg.70]    [Pg.60]    [Pg.1021]    [Pg.1130]    [Pg.1131]    [Pg.34]    [Pg.78]   
See also in sourсe #XX -- [ Pg.479 ]




SEARCH



Carboxyl groups deprotonation

Carboxylic acid deprotonation

Deprotonated carboxylic acid

Deprotonation methyl carboxylate

Deprotonation of carboxylic acids

Doubly deprotonated carboxylic acid

Reactivity effects deprotonation/ carboxylation

© 2024 chempedia.info