Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids acyl chloride carbonylation

The chemistry of the carbonyl group is probably the single most important aspect of organic chemical reactivity Classes of compounds that contain the carbonyl group include many derived from carboxylic acids (acyl chlorides acid anhydrides esters and amides) as well as the two related classes discussed m this chapter aldehydes and ketones... [Pg.741]

The negatively charged oxygen substituent is a powerful electron donor to the carbonyl group Resonance m carboxylate anions is more effective than resonance m carboxylic acids acyl chlorides anhydrides thioesters esters and amides... [Pg.836]

Another important part of Organic 11 is carbonyl chemistry. We look at the basics of the carbonyls in Chapter 9. It s like a family reunion where 1 (John, one of your authors) grew up in North Carolina — everybody is related. You meet aldehydes, ketones, carboxylic acids, acyl chlorides, esters, cimides, and on and on. It s a quick peek, because later we go back and examine many of these in detail. For example, in Chapter 10 you study aldehydes and ketones, along with some of the amines, while in Chapter 11 we introduce you to other carbonyl compounds, enols and enolates, along with nitroalkanes and nitriles. [Pg.15]

This sequence is fundamental to the carbonyl-group chemistry of carboxylic acids, acyl chlorides, anhydrides, esters, and amides. [Pg.798]

Acyl chlorides have a Cl in place of the OH group of a carboxylic acid. Acyl chlorides are named by replacing ic acid of the acid name with yl chloride. For cyclic acids that end with carboxylic acid, carboxylic acid is replaced with carbonyl chloride. (Acyl bromides exist too, but are less common than acyl chlorides.)... [Pg.723]

Carboxylic acids contain a carbonyl group, but it does not undergo the type of addition reactions that occur with the aldehydes and ketones. The carbonyl group in carboxylic acids, esters, amides or acyl chlorides has the electronegative atoms O, N or Cl next to the C=0, and these stop it from acting as a proper C=0 group should (Figure 7.2.15). [Pg.358]

Many compounds contain more than one functional group Prostaglandin Ei a hormone that regulates the relaxation of smooth muscles con tains two different kinds of carbonyl groups Classify each one (aldehyde ketone carboxylic acid ester amide acyl chloride or acid anhydride) Identify the most acidic proton in prostaglandin Ei and use Table 1 7 to estimate its pK ... [Pg.144]

Conversions of acid anhydrides to other carboxylic acid derivatives are illustrated m Table 20 2 Because a more highly stabilized carbonyl group must result m order for nucleophilic acyl substitution to be effective acid anhydrides are readily converted to carboxylic acids esters and amides but not to acyl chlorides... [Pg.842]

There are large differences in reactivity among the various carboxylic acid derivatives, such as amides, esters, and acyl chlorides. One important factor is the resonance stabilization provided by the heteroatom. This decreases in the order N > O > Cl. Electron donation reduces the electrophilicity of the carbonyl group, and the corresponding stabilization is lost in the tetrahedral intermediate. [Pg.473]

FIGURE 20.1 Structure, reactivity, and carbonyl-group stabilization in carboxylic acid derivatives. Acyl chlorides are the most reactive, amides the least reactive. Acyl chlorides have the least stabilized carbonyl group, amides the most. Conversion of one class of compounds to another is feasible only in the direction that leads to a more stabilized carbonyl group that is, from more reactive to less reactive. [Pg.833]

The carbonyl group of an fflnide is stabilized to a greater extent than that of an acyl chloride, acid anhydride, or ester fflnides are fonned rapidly and in high yield from each of these carboxylic acid derivatives. [Pg.860]

Anhydrides are reduced with relative ease. McAlees and McCrindle 20) established the following increasing order of difficulty for various carbonyls acid chlorides > aldehydes, ketones > anhydrides > esters > carboxylic acids > amides. Reduction may proceed by 1,2-addilion of hydrogen or by cleavage of an oxygen-carbonyl bond. If 1,2-addition to the carbonyl occurs, as in the presence of strong protic acids over palladium, 1,1-diesters are formed by acylation 26). [Pg.79]

Carboxylic acids, RC02H, occupy a central place among carbonyl compounds. Not only are they valuable in themselves, they also serve as starting materials for preparing numerous acyl derivatives such as acid chlorides, esters, amides, and thioesters. In addition, carboxylic acids are present in the majority of biological pathways. We ll look both at acids and at their close relatives, nitriles (RC=N), in this chapter and at acyl derivatives in the next chapter. [Pg.751]

Conversion of Acid Halides into Acids Hydrolysis Acid chlorides react with water to yield carboxylic acids. This hydrolysis reaction is a typical nucleophilic acyl substitution process and is initiated by attack of water on the acid chloride carbonyl group. The tetrahedral intermediate undergoes elimination of Cl and loss of H+ fo give the product carboxylic acid plus HC1. [Pg.802]

Conversion of Acid Chlorides into Alcohols Reduction Acid chlorides are reduced by LiAJH4 to yield primary alcohols. The reaction is of little practical value, however, because the parent carboxylic acids are generally more readily available and can themselves be reduced by L1AIH4 to yield alcohols. Reduction occurs via a typical nucleophilic acyl substitution mechanism in which a hydride ion (H -) adds to the carbonyl group, yielding a tetrahedral intermediate that expels Cl-. The net effect is a substitution of -Cl by -H to yield an aldehyde, which is then immediately reduced by UAIH4 in a second step to yield the primary alcohol. [Pg.804]

In addition to the direct nucleophilic alkylation of carbonyl complexes, the acylation of metallates with, e.g., carboxylic acid chlorides [73,100,102] or anhydrides [79] is a practical way of generating acyl complexes (Figure 2.4). Illustrative examples are given in Table 2.3. [Pg.18]


See other pages where Carboxylic acids acyl chloride carbonylation is mentioned: [Pg.526]    [Pg.969]    [Pg.966]    [Pg.833]    [Pg.1285]    [Pg.43]    [Pg.772]    [Pg.431]    [Pg.165]    [Pg.33]    [Pg.242]    [Pg.385]    [Pg.107]   


SEARCH



Acidic carbonyl

Acyl chlorides

Acylation acid chlorides

Acylation acyl chlorides

Carbonyl carboxylate

Carbonyl chlorid

Carbonyl chloride

Carboxylates chloride

Carboxylic acid chlorides

Carboxylic acids acid chlorides

Carboxylic acids acylation

Chlorides carbonylation

© 2024 chempedia.info