Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl volatile flavor compounds from lipid

Flavor is one of the major characteristics that restricts the use of legume flours and proteins in foods. Processing of soybeans, peas and other legumes often results in a wide variety of volatile compounds that contribute flavor notes, such as grassy, beany and rancid flavors. Many of the objectionable flavors come from oxidative deterioration of the unsaturated lipids. The lipoxygenase-catalyzed conversion of unsaturated fatty acids to hydroperoxides, followed by their degradation to volatile and non-volatile compounds, has been identified as one of the important sources of flavor and aroma components of fruits and vegetables. An enzyme-active system, such as raw pea flour, may have most of the necessary enzymes to produce short chain carbonyl compounds. [Pg.32]

The structure of the food matrix is also known to affect the release of volatile compounds having an impact on flavors and aroma. Changes in flavor result from the interactions of lipid-derived carbonyl compounds by aldolization with the amino groups of proteins. Undesirable flavors are produced when beef or chicken are fried in oxidized fats by the interaction of secondary lipid oxidation... [Pg.317]

Not all of the potent volatile compounds are derived from lipid oxidation, including a number of lactones that come from naturally occurring hydroxy fatty acids, diacetyl and vanillin in butter oil (from melted butter). The concentrations of the mixtures of carbonyl compounds exceed the flavor threshold values for individual aldehydes, and the oxidized flavor results from a combination of volatile compounds. [Pg.327]

In addition to simple model systems, more complex systems which are closer to actual foodstuffs have been used to investigate the formation of flavor chemicals in the Maillard reaction. Sixty-three volatile chemicals were isolated and identified from starch heated with glycine (4). When beef fat was used as a carbonyl compound precursor in a Maillard model system with glycine, 143 volatile chemicals were identified (6). These included fifteen n-alkanes, twelve n-alkenes, thirteen n-aldehydes, thirteen 2-ketones, twelve n-alcohols, and eleven n-alkylcyclohexanes. Recently, the effect of lipids and carbohydrates on the thermal generation of volatiles from commercial zein was studied (7). [Pg.135]

In our opinion, the predominant contribution to flavor seems to come from sulfurous and carbonyl-containing volatiles. While many of the sulfur-containing volatiles are known to have meaty aromas, volatile carbonyl compounds generally are formed by lipid autoxidation/degradation and do not possess meaty flavor notes. However, it has been indicated that the carbonyl compounds are responsible for the "chickeny" aroma of cooked chicken (17). Thus, lipid autoxldatlon appears to yield the character impact compounds for chicken (18). [Pg.189]

Flavors and aromas commonly associated with seafoods have been intensively investigated in the past forty years ( l-7), but the chemical basis of these flavors has proven elusive and difficult to establish. Oxidized fish oils can be described as painty, rancid or cod-liver-oil like (j ), and certain volatile carbonyls arising from the autoxidation of polyunsaturated fatty acids have emerged as the principal contributors to this type of fish-like aroma ( 3, 5, 9-10). Since oxidized butterfat (9, 11-12) and oxidized soybean and linseed oils (13) also can develop similar painty, fish-like aromas, confusion has arisen over the compounds and processes that lead to fish-like aromas. Some have believed that the aromas of fish simply result from the random autoxidation of the polyunsaturated fatty acids of fish lipids (14-17). This view has often been retained because no single compound appears to exhibit an unmistakable fish aroma. Still, evidence has been developed which indicates that a relatively complex mixture of autoxidatively-derived volatiles, including the 2,4-heptadienals, the 2,4-decadienals, and the 2,4,7-decatrienals together elicit unmistakable, oxidized fish-oil aromas (3, 9, 18). Additionally, reports also suggest that contributions from (Z -4-heptenal may add characteristic notes to the cold-store flavor of certain fish, especially cod (4-5). [Pg.201]

Carbonyl compounds in oxidized lipids are the secondary oxidation products resulting from the decomposition of the hydroperoxides. They can be quantified by the reaction with 2,4-dinitrophenylhydrazine and the resulting colored hydrazones are measured spectrophotometrically at 430-460 nm. The carbonyl value is directly related to sensory evaluation, because many of the carbonyl molecules are those responsible for off-flavor in oxidized oil. The anisidine value is a measure of carbonyl compounds that have medium molecular weight and are less volatile (Frankel 1998). It can be used to discover something about the prior oxidation or processing history of an oil. [Pg.46]

Oxidation of unsaturated acyl chains of lipids is a major route to volatile compounds during cooking of fat-containing food of either animal or vegetable origin. The unsaturated fatty acids, readily susceptible to the attack by oxygen, form hydroperoxides which in themselves are odorless and tasteless. The compounds that influence the flavor of the product result from a further breakdown of these hydroperoxides, and, normally, include saturated and unsaturated aldehydes, alcohols, and ketones. The carbonyl compounds resulting from autoxidation impart specific flavors that are normally detrimental to food products (Table 9.3). It should be pointed out, however, that they may also contribute to the desirable characteristic flavor of foods [48]. [Pg.299]


See other pages where Carbonyl volatile flavor compounds from lipid is mentioned: [Pg.330]    [Pg.325]    [Pg.126]    [Pg.220]    [Pg.561]    [Pg.111]    [Pg.479]    [Pg.398]   


SEARCH



Compounding flavoring

Flavor compounding

Flavor volatile compounds

From carbonyl compounds

Lipid compounds

Lipidic Compound

Lipids flavor from

Lipids volatile

Volatile carbonyl

Volatile carbonyl compounds

Volatile compounds

© 2024 chempedia.info