Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl complexes, chromium 364 Subject

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Further restrictions to the scope of the present article concern certain molecules which can in one or more of their canonical forms be represented as carbenes, e.g. carbon monoxide such stable molecules, which do not normally show carbenoid reactivity, will not be considered. Nor will there be any discussion of so-called transition metal-carbene complexes (see, for example, Fischer and Maasbol, 1964 Mills and Redhouse, 1968 Fischer and Riedel, 1968). Carbenes in these complexes appear to be analogous to carbon monoxide in transition-metal carbonyls. Carbenoid reactivity has been observed only in the case of certain iridium (Mango and Dvoretzky, 1966) and iron complexes (Jolly and Pettit, 1966), but detailed examination of the nature of the actual reactive intermediate, that is to say, whether the complexes react as such or first decompose to give free carbenes, has not yet been reported. A chromium-carbene complex has been suggested as a transient intermediate in the reduction of gfem-dihalides by chromium(II) sulphate because of structural effects on the reaction rate and because of the structure of the reaction products, particularly in the presence of unsaturated compounds (Castro and Kray, 1966). The subject of carbene-metal complexes reappears in Section IIIB. [Pg.156]

Interestingly, the first NHC complexes were reported with chromium (0) carbonyl by Ofele in 1968. Relatively few NHC early-transition metal complexes were then reported in the 1990s and this number steadily increased over the past decade. This subject is now mature moreover, the coordination chemistry of NHC has been investigated with alkali metals, alkaline earth metals, lanthanides or group 13-15 metals. Applications of these NHC complexes in catalysis now include, most notably, olefin polymerization or ring-opening polymerization of cyclic esters. Some of these complexes display high activity and selectivity and, in some instances, may compete with the best systems in the field. [Pg.422]


See other pages where Carbonyl complexes, chromium 364 Subject is mentioned: [Pg.4534]    [Pg.187]    [Pg.4]    [Pg.289]    [Pg.257]    [Pg.786]    [Pg.66]    [Pg.785]    [Pg.52]    [Pg.328]    [Pg.149]   


SEARCH



Chromium Subject

Chromium carbonyl complex

Chromium carbonylation

Chromium carbonyls

Subject Complex

Subject carbonylation

Subject carbonyls

© 2024 chempedia.info