Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl chloride iodide synthesis

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

Several new methods for the synthesis of the oxazole nucleus were published. A new consecutive three-component oxazole synthesis by an amidation-coupling-cycloisomerisation sequence was developed. The synthesis started from propargylamine 92 and acyl chlorides. To extend this process, a four component sequence involving a carbonylative arylation by substitution of one acyl chloride with an aryl iodide and a CO atmosphere was also performed <06CC4817>. [Pg.298]

Even the sterically hindered 2,6-disubstituted aryl iodide 443 is carbonylated smoothly to give 445. Alkyl iodide present in the alcoholic component 444 remains intact under the carbonylation conditions. This carbonylation reaction is a key reaction in the synthesis of zearalenone (446) [216]. Optimal conditions for technical synthesis of the anthranilic acid derivative 448 from bromide 447 has been studied, and it has been found that A-acetyl protection of 447, which has a chelating effect, is important [217]. Cheaply available chlorides are rather inert [13]. The carbonylation of chloride 449 in the presence of DBU and Nal gives the amide 450 [218],... [Pg.86]

This microwave-accelerated double alkylation reaction was applicable to a variety of aniline derivatives and dihalides, furnishing N-aryl azacycloalkanes in good to excellent yields [89]. The reaction was applicable to alkyl chlorides, bromides and iodides and was extended to include hydrazines [90]. This improved synthetic methodology provided a simple and straightforward one-pot approach to the synthesis of a variety of heterocycles such as substituted azetidines, pyrrolidines, piperidines, azepanes, N-substituted-2,3-dihydro-Iff-isoindoles, 4,5-dihydro-pyrazoles, pyrazolidines, and 1,2-dihydro-phthalazines [91]. The mild reaction conditions tolerated a variety of functional groups such as hydroxyls, carbonyls, and esters. [Pg.223]

Numerous aryl bromides, iodides [203], borates [204] and triflates [205, 206] have been successfully carbonylated. Triflates could serve as a route for the synthesis of arenecarboxylic acid derivatives from phenols. This carbonylation using dppf in a catalytic mixture generally shows higher efficiency than PPhj or P(o-Tol)3 [207]. Poor performance is also noted for PPhj in a Pd-catalyzed vinyl substitution of aryl bromides [208]. Side-reactions involving the formation of [PPhjAr]Br and ArH are responsible. A system which is catalyzed effectively by PdCljfdppf) under 10 atm CO is the desulfonylation of 1-naphthalenesulfonyl chloride 58 in the presence of Ti(OiPr)4. Formation of isopropyl 1-naphthoate 59 can be explained in a sequence of oxidative addition, SOj extrusion, carbonylation and reductive elimination (Fig. 1-27) [209]. A notable side-product is di-l-naphthyl disulfide. [Pg.70]


See other pages where Carbonyl chloride iodide synthesis is mentioned: [Pg.29]    [Pg.485]    [Pg.56]    [Pg.77]    [Pg.160]    [Pg.480]    [Pg.366]    [Pg.385]    [Pg.58]    [Pg.191]    [Pg.653]    [Pg.77]    [Pg.29]    [Pg.504]    [Pg.664]    [Pg.744]    [Pg.9]    [Pg.150]    [Pg.124]    [Pg.151]    [Pg.42]    [Pg.93]    [Pg.194]    [Pg.173]    [Pg.286]    [Pg.216]    [Pg.77]    [Pg.4099]    [Pg.9]    [Pg.26]    [Pg.194]    [Pg.909]    [Pg.366]    [Pg.682]    [Pg.152]    [Pg.436]    [Pg.1023]    [Pg.210]    [Pg.175]   
See also in sourсe #XX -- [ Pg.740 ]




SEARCH



Carbonyl chlorid

Carbonyl chloride

Carbonyl chloride iodide

Carbonyl iodides

Carbonyls synthesis

Chlorides carbonylation

Iodide chloride

Iodides carbonylation

Iodides, synthesis

Synthesis carbonylation

Synthesis chloride

© 2024 chempedia.info