Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl addition reactions nucleophilic, intermediates

In general terms, there are three possible mechanisms for addition of a nucleophile and a proton to give a tetrahedral intermediate in a carbonyl addition reaction. [Pg.456]

You saw a carbonyl addition reaction forming a polymer right at the beginning of the chapter—the polymerization of formaldehyde. If an amine is added to formaldehyde, condensation to form imines and imine salts occurs readily. These intermediates are themselves electrophilic so we have the basis for ionic polymerization—electrophilic and nucleophilic molecules present in the same mixture. Reaction with a second molecule of amine gives an aminal, the nitrogen equivalent of an acetal. [Pg.1467]

An interesting intermolecular version of this reaction has likewise been put forward for the preparation of seven-, eight-, and nine-mem-bered carbocycle, as illustrated with a sole example in Scheme 3 [7]. In contrast to the above, these reactions begin with a carbonyl addition reaction of chloroiodoalkanes to cyclic or acyclic keto esters leading to the formation of an intermediate lactone. An intramolecular nucleophilic acyl substitution then terminates the sequence. The example in Scheme 3 represents a simple method for the construction of the 5 8 5 tricyclic ring system. [Pg.36]

The carbonyl-carbon kinetic isotope effect (KIE) and the substituent effects for the reaction of lithium pinacolone enolate (112) with benzaldehyde (equation 31) were analyzed by Yamataka, Mishima and coworkers ° and the results were compared with those for other lithium reagents such as MeLi, PhLi and AllLi. Ab initio (HF/6-31-I-G ) calculations were carried out to estimate the equilibrium isotope effect (EIE) on the addition to benzaldehyde. In general, a carbonyl addition reaction (equation 32) proceeds by way of either a direct one-step polar nucleophilic attack (PL) or a two-step process involving electron transfer (ET) and a radical ion intermediate. The carbonyl-carbon KIE was of primary nature for the PL or the radical coupling (RC) rate-determining ET mechanism, while it was considered to be less important for the ET rate-determining mechanism. The reaction of 112 with benzaldehyde gave a small positive KIE = 1.019),... [Pg.41]

A large body of polymerization reactions following step growth mechanism are carbonyl addition reactions followed by elimination. The general reaction mechanism of the carbonyl addition-elimination reaction is well understood (6). The nucleophilic reagent attacks approximately perpendicular to the sp -orbitals of the carbonyl and forms a bond with the electropoative carbonyl carbon. The metastable intermediate has the ji electron pair of the C=0 bond localized on the oxygen. Furtha reaction leads to the loss of either substiuent X or Y. In the latter case reaction leads to the desired product ... [Pg.572]

In the Claisen condensation, a nucleophilic ester enolate donor is added to the carbonyl group of a second ester molecule. Loss of alkoxide from the resultant intermediate — the tetrahedral adduct — forms a P-keto ester, which is much more acidic than the starting ester. Hence, deprotonation of the initial product by alkoxide drives the overall reaction to completion and protects the P-keto ester from further carbonyl addition reactions. Thus, the starting ester must have at least two a-hydrogens. [Pg.217]

It should also be emphasized that the metal counterions associated with the nucleophiles are active participants in carbonyl addition reactions. There are strong interactions between the carbonyl oxygen and the metal ions in the TSs and intermediates. This effect can be recognized, for example, in the reactivity of borohydrides, where the Li, Ca, and Zn + salts are more reactive than the standard NaBH4 reagent because of the greater Lewis acid strength of these cations. [Pg.180]

With certain other nucleophiles addition takes place at the carbon-carbon double bond rather than at the carbonyl group Such reactions proceed via enol intermediates and are described as conjugate addition ox 1 4 addition reactions... [Pg.777]

Carbinolamines are formed by nucleophilic addition of an amine to a carbonyl group and are intermediates in the for mation of imines and enamines Carbocation (Section 4 8) Positive ion in which the charge re sides on carbon An example is tert butyl cation (CH3)3C Carbocations are unstable species that though they cannot normally be isolated are believed to be intermediates in certain reactions... [Pg.1278]

As we saw in A Preview of Carbonyl Compounds, the most general reaction of aldehydes and ketones is the nucleophilic addition reaction. A nucleophile, Nu-, approaches along the C=0 bond from an angle of about 75° to the plane of the carbonyl group and adds to the electrophilic C=0 carbon atom. At the same time, rehybridization of the carbonyl carbon from sp2 to sp3 occurs, an electron pair from the C=0 bond moves toward the electronegative oxygen atom, and a tetrahedral alkoxide ion intermediate is produced (Figure 19.1). [Pg.702]

As a general rule, nucleophilic addition reactions are characteristic only of aldehydes and ketones, not of carboxylic acid derivatives. The reason for the difference is structural. As discussed previously in A Preview of Carbonyl Compounds and shown in Figure 19.14, the tetrahedral intermediate produced by addition of a nucleophile to a carboxylic acid derivative can eliminate a leaving group, leading to a net nucleophilic acyl substitution reaction. The tetrahedral intermediate... [Pg.723]

The addition of a nucleophile to a polar C=0 bond is the key step in thre< of the four major carbonyl-group reactions. We saw in Chapter 19 that when. nucleophile adds to an aldehyde or ketone, the initially formed tetrahedra intermediate either can be protonated to yield an alcohol or can eliminate th< carbonyl oxygen, leading to a new C=Nu bond. When a nucleophile adds to carboxylic acid derivative, however, a different reaction course is followed. Tin initially formed tetrahedral intermediate eliminates one of the two substituent originally bonded to the carbonyl carbon, leading to a net nucleophilic acy substitution reaction (Figure 21.1. ... [Pg.789]

Michael addition is a 1,4-addition reaction of a nucleophile to an a, /1-unsaturated system in which the double bond is conjugated with a carbonyl group, enabling the formation of the corresponding enolate as an intermediate (equation 27). [Pg.410]

A second important reaction type considered in this chapter is conjugate addition, which involves addition of nucleophiles to electrophilic double or triple bonds. A crucial requirement for this reaction is an electron-withdrawing group (EWG) that can stabilize the negative charge on the intermediate. We focus on reactions between enolates and a,(3-unsaturated carbonyl compounds and other electrophilic alkenes such as nitroalkenes. [Pg.64]

Carbonylation reactions have been observed using both Pd(II)-alkene complexes and CT-bonded Pd(II) species formed by oxidative addition. Under reductive conditions, the double bond can be hydrocarbonylated, resulting in the formation of a carboxylic acid or ester.238 In nucleophilic solvents, the intermediate formed by solvopalladation is intercepted by carbonylation and addition of nucleophilic solvent. In both types of reactions, regioisomeric products are possible. [Pg.748]

The transformation of2-734 involves an initial generation of an organosamarium species 2-735 with subsequent nucleophilic addition to the lactone carbonyl. Presumably, a tetrahedral intermediate 2-736 is formed that collapses to yield the ketone 2-737. This reacts with Sml2 to give a ketyl radical 2-738, which undergoes an intramolecular S-exo radical cyclization reaction with the alkene moiety. The resultant... [Pg.159]


See other pages where Carbonyl addition reactions nucleophilic, intermediates is mentioned: [Pg.230]    [Pg.234]    [Pg.662]    [Pg.1259]    [Pg.70]    [Pg.1251]    [Pg.1261]    [Pg.1261]    [Pg.267]    [Pg.1259]    [Pg.665]    [Pg.17]    [Pg.335]    [Pg.649]    [Pg.470]    [Pg.246]    [Pg.931]    [Pg.22]    [Pg.326]    [Pg.174]    [Pg.6]    [Pg.359]    [Pg.260]    [Pg.58]    [Pg.354]   
See also in sourсe #XX -- [ Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 , Pg.329 , Pg.330 ]




SEARCH



1,4-7/Addition intermediate

Addition reactions nucleophilic

Carbonyl addition reactions

Carbonyl, addition

Carbonylation additive

Nucleophile addition reactions

Nucleophile intermediate

Nucleophiles addition reactions

Nucleophiles, reactions carbonyls

Nucleophilic carbonylation

Nucleophilic reactions, carbonyl

© 2024 chempedia.info